Relationships Between Enamel Prism Decussation and Organization of the Ameloblast Layer in Rodent Incisors

ABSTRACT Rodent enamel microstructure has been extensively investigated, primarily on the basis of 2D electronic microscopy data. The nature and dynamics of the ameloblasts (the enamel‐secreting cells) have also been well studied. However, critical issues still remain surrounding exactly how the ame...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Anatomical record (Hoboken, N.J. : 2007) N.J. : 2007), 2019-07, Vol.302 (7), p.1195-1209
Hauptverfasser: Alloing‐Séguier, Léanie, Marivaux, Laurent, Barczi, Jean‐François, Lihoreau, Fabrice, Martinand‐Mari, Camille
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1209
container_issue 7
container_start_page 1195
container_title Anatomical record (Hoboken, N.J. : 2007)
container_volume 302
creator Alloing‐Séguier, Léanie
Marivaux, Laurent
Barczi, Jean‐François
Lihoreau, Fabrice
Martinand‐Mari, Camille
description ABSTRACT Rodent enamel microstructure has been extensively investigated, primarily on the basis of 2D electronic microscopy data. The nature and dynamics of the ameloblasts (the enamel‐secreting cells) have also been well studied. However, critical issues still remain surrounding exactly how the ameloblasts produce the astonishing microstructural complexity of enamel, and how this subtle architecture evolved through time. In this article, we used a new methodology based on confocal laser microscopy to reconstruct the enamel microstructure of rodent incisors in three dimensions (3D) with the ameloblasts in situ. We proposed interpretations regarding the possible relationships between the workings of the ameloblasts and the resulting enamel prisms, especially how the phenomenon of decussation is generated. Finally, we were able to represent the two main types of modern rodent incisor microstructures (uniserial and multiserial decussations), as a set of parameters that have been entered into the 3D enamel simulation software Simulenam to generate 3D models that can be digitally manipulated. Associating 2D data of incisor enamel microstructure of fossil rodents and Simulenam, it was then possible to better understand how the various decussation parameters evolved through time and gave rise to the two modern microstructure types from the same ancestral type (pauciserial). This study also confirmed that rodent and artiodactyl enamel do not share the same mechanism of decussation formation. Anat Rec, 302:1195–1209, 2019. © 2018 Wiley Periodicals, Inc.
doi_str_mv 10.1002/ar.24000
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01908000v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2236362916</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4170-3828680c62260406cfcc5dbbc58e695edb527c6ceb1d85134fcc5d064f7f5ccf3</originalsourceid><addsrcrecordid>eNp10dFqFDEUBuAgiq1V8Akk4I29mHqSTLKZy22ttrBQWfQ6ZDJn3CwzyZrMWNan73SnriB4lXDy8ZPkJ-QtgwsGwD_adMFLAHhGTlkleKHLqnx-3Gt1Ql7lvAWQJVTiJTkRIJTkkp-S7Ro7O_gY8sbvMr3E4R4x0Otge-zo1-RzTz-hG3M-KGpDQ-_SDxv873kQWzpskC4nHuvO5oGu7B4T9YGuY4NhoLfB-RxTfk1etLbL-OZpPSPfP19_u7opVndfbq-Wq8KVbAGF0FwrDU5xrqAE5VrnZFPXTmpUlcSmlnzhlMOaNVoyUR7OQZXtopXOteKMnM-5G9uZXfK9TXsTrTc3y5V5nAGrQE-_9YtN9sNsdyn-HDEPpvfZYdfZgHHMhjOuKuCawUTf_0O3cUxheonhXCiheMXU30CXYs4J2-MNGJjHroxN5tDVRN89BY51j80R_ilnAsUM7n2H-_8GmeV6DnwApDebeA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2236362916</pqid></control><display><type>article</type><title>Relationships Between Enamel Prism Decussation and Organization of the Ameloblast Layer in Rodent Incisors</title><source>Wiley Online Library Journals Frontfile Complete</source><source>Wiley Online Library Free Content</source><creator>Alloing‐Séguier, Léanie ; Marivaux, Laurent ; Barczi, Jean‐François ; Lihoreau, Fabrice ; Martinand‐Mari, Camille</creator><creatorcontrib>Alloing‐Séguier, Léanie ; Marivaux, Laurent ; Barczi, Jean‐François ; Lihoreau, Fabrice ; Martinand‐Mari, Camille</creatorcontrib><description>ABSTRACT Rodent enamel microstructure has been extensively investigated, primarily on the basis of 2D electronic microscopy data. The nature and dynamics of the ameloblasts (the enamel‐secreting cells) have also been well studied. However, critical issues still remain surrounding exactly how the ameloblasts produce the astonishing microstructural complexity of enamel, and how this subtle architecture evolved through time. In this article, we used a new methodology based on confocal laser microscopy to reconstruct the enamel microstructure of rodent incisors in three dimensions (3D) with the ameloblasts in situ. We proposed interpretations regarding the possible relationships between the workings of the ameloblasts and the resulting enamel prisms, especially how the phenomenon of decussation is generated. Finally, we were able to represent the two main types of modern rodent incisor microstructures (uniserial and multiserial decussations), as a set of parameters that have been entered into the 3D enamel simulation software Simulenam to generate 3D models that can be digitally manipulated. Associating 2D data of incisor enamel microstructure of fossil rodents and Simulenam, it was then possible to better understand how the various decussation parameters evolved through time and gave rise to the two modern microstructure types from the same ancestral type (pauciserial). This study also confirmed that rodent and artiodactyl enamel do not share the same mechanism of decussation formation. Anat Rec, 302:1195–1209, 2019. © 2018 Wiley Periodicals, Inc.</description><identifier>ISSN: 1932-8486</identifier><identifier>EISSN: 1932-8494</identifier><identifier>DOI: 10.1002/ar.24000</identifier><identifier>PMID: 30365252</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley &amp; Sons, Inc</publisher><subject>Ameloblasts ; Biodiversity ; Cellular Biology ; Computer Science ; Dental enamel ; Earth Sciences ; Enamel ; enamel evolution ; enamel microstructure ; Incisors ; Life Sciences ; Microscopy ; Microstructure ; Modeling and Simulation ; Paleontology ; Populations and Evolution ; Rodentia ; Sciences of the Universe ; simulation ; Subcellular Processes</subject><ispartof>Anatomical record (Hoboken, N.J. : 2007), 2019-07, Vol.302 (7), p.1195-1209</ispartof><rights>2018 Wiley Periodicals, Inc.</rights><rights>2019 Wiley Periodicals, Inc.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4170-3828680c62260406cfcc5dbbc58e695edb527c6ceb1d85134fcc5d064f7f5ccf3</citedby><cites>FETCH-LOGICAL-c4170-3828680c62260406cfcc5dbbc58e695edb527c6ceb1d85134fcc5d064f7f5ccf3</cites><orcidid>0000-0002-9909-0071 ; 0000-0002-4327-5341 ; 0000-0002-2882-0874</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Far.24000$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Far.24000$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,777,781,882,1413,1429,27906,27907,45556,45557,46391,46815</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30365252$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.umontpellier.fr/hal-01908000$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Alloing‐Séguier, Léanie</creatorcontrib><creatorcontrib>Marivaux, Laurent</creatorcontrib><creatorcontrib>Barczi, Jean‐François</creatorcontrib><creatorcontrib>Lihoreau, Fabrice</creatorcontrib><creatorcontrib>Martinand‐Mari, Camille</creatorcontrib><title>Relationships Between Enamel Prism Decussation and Organization of the Ameloblast Layer in Rodent Incisors</title><title>Anatomical record (Hoboken, N.J. : 2007)</title><addtitle>Anat Rec (Hoboken)</addtitle><description>ABSTRACT Rodent enamel microstructure has been extensively investigated, primarily on the basis of 2D electronic microscopy data. The nature and dynamics of the ameloblasts (the enamel‐secreting cells) have also been well studied. However, critical issues still remain surrounding exactly how the ameloblasts produce the astonishing microstructural complexity of enamel, and how this subtle architecture evolved through time. In this article, we used a new methodology based on confocal laser microscopy to reconstruct the enamel microstructure of rodent incisors in three dimensions (3D) with the ameloblasts in situ. We proposed interpretations regarding the possible relationships between the workings of the ameloblasts and the resulting enamel prisms, especially how the phenomenon of decussation is generated. Finally, we were able to represent the two main types of modern rodent incisor microstructures (uniserial and multiserial decussations), as a set of parameters that have been entered into the 3D enamel simulation software Simulenam to generate 3D models that can be digitally manipulated. Associating 2D data of incisor enamel microstructure of fossil rodents and Simulenam, it was then possible to better understand how the various decussation parameters evolved through time and gave rise to the two modern microstructure types from the same ancestral type (pauciserial). This study also confirmed that rodent and artiodactyl enamel do not share the same mechanism of decussation formation. Anat Rec, 302:1195–1209, 2019. © 2018 Wiley Periodicals, Inc.</description><subject>Ameloblasts</subject><subject>Biodiversity</subject><subject>Cellular Biology</subject><subject>Computer Science</subject><subject>Dental enamel</subject><subject>Earth Sciences</subject><subject>Enamel</subject><subject>enamel evolution</subject><subject>enamel microstructure</subject><subject>Incisors</subject><subject>Life Sciences</subject><subject>Microscopy</subject><subject>Microstructure</subject><subject>Modeling and Simulation</subject><subject>Paleontology</subject><subject>Populations and Evolution</subject><subject>Rodentia</subject><subject>Sciences of the Universe</subject><subject>simulation</subject><subject>Subcellular Processes</subject><issn>1932-8486</issn><issn>1932-8494</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp10dFqFDEUBuAgiq1V8Akk4I29mHqSTLKZy22ttrBQWfQ6ZDJn3CwzyZrMWNan73SnriB4lXDy8ZPkJ-QtgwsGwD_adMFLAHhGTlkleKHLqnx-3Gt1Ql7lvAWQJVTiJTkRIJTkkp-S7Ro7O_gY8sbvMr3E4R4x0Otge-zo1-RzTz-hG3M-KGpDQ-_SDxv873kQWzpskC4nHuvO5oGu7B4T9YGuY4NhoLfB-RxTfk1etLbL-OZpPSPfP19_u7opVndfbq-Wq8KVbAGF0FwrDU5xrqAE5VrnZFPXTmpUlcSmlnzhlMOaNVoyUR7OQZXtopXOteKMnM-5G9uZXfK9TXsTrTc3y5V5nAGrQE-_9YtN9sNsdyn-HDEPpvfZYdfZgHHMhjOuKuCawUTf_0O3cUxheonhXCiheMXU30CXYs4J2-MNGJjHroxN5tDVRN89BY51j80R_ilnAsUM7n2H-_8GmeV6DnwApDebeA</recordid><startdate>201907</startdate><enddate>201907</enddate><creator>Alloing‐Séguier, Léanie</creator><creator>Marivaux, Laurent</creator><creator>Barczi, Jean‐François</creator><creator>Lihoreau, Fabrice</creator><creator>Martinand‐Mari, Camille</creator><general>John Wiley &amp; Sons, Inc</general><general>Wiley Subscription Services, Inc</general><general>Wiley-Blackwell</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>7TS</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-9909-0071</orcidid><orcidid>https://orcid.org/0000-0002-4327-5341</orcidid><orcidid>https://orcid.org/0000-0002-2882-0874</orcidid></search><sort><creationdate>201907</creationdate><title>Relationships Between Enamel Prism Decussation and Organization of the Ameloblast Layer in Rodent Incisors</title><author>Alloing‐Séguier, Léanie ; Marivaux, Laurent ; Barczi, Jean‐François ; Lihoreau, Fabrice ; Martinand‐Mari, Camille</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4170-3828680c62260406cfcc5dbbc58e695edb527c6ceb1d85134fcc5d064f7f5ccf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Ameloblasts</topic><topic>Biodiversity</topic><topic>Cellular Biology</topic><topic>Computer Science</topic><topic>Dental enamel</topic><topic>Earth Sciences</topic><topic>Enamel</topic><topic>enamel evolution</topic><topic>enamel microstructure</topic><topic>Incisors</topic><topic>Life Sciences</topic><topic>Microscopy</topic><topic>Microstructure</topic><topic>Modeling and Simulation</topic><topic>Paleontology</topic><topic>Populations and Evolution</topic><topic>Rodentia</topic><topic>Sciences of the Universe</topic><topic>simulation</topic><topic>Subcellular Processes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Alloing‐Séguier, Léanie</creatorcontrib><creatorcontrib>Marivaux, Laurent</creatorcontrib><creatorcontrib>Barczi, Jean‐François</creatorcontrib><creatorcontrib>Lihoreau, Fabrice</creatorcontrib><creatorcontrib>Martinand‐Mari, Camille</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Physical Education Index</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Anatomical record (Hoboken, N.J. : 2007)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Alloing‐Séguier, Léanie</au><au>Marivaux, Laurent</au><au>Barczi, Jean‐François</au><au>Lihoreau, Fabrice</au><au>Martinand‐Mari, Camille</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Relationships Between Enamel Prism Decussation and Organization of the Ameloblast Layer in Rodent Incisors</atitle><jtitle>Anatomical record (Hoboken, N.J. : 2007)</jtitle><addtitle>Anat Rec (Hoboken)</addtitle><date>2019-07</date><risdate>2019</risdate><volume>302</volume><issue>7</issue><spage>1195</spage><epage>1209</epage><pages>1195-1209</pages><issn>1932-8486</issn><eissn>1932-8494</eissn><abstract>ABSTRACT Rodent enamel microstructure has been extensively investigated, primarily on the basis of 2D electronic microscopy data. The nature and dynamics of the ameloblasts (the enamel‐secreting cells) have also been well studied. However, critical issues still remain surrounding exactly how the ameloblasts produce the astonishing microstructural complexity of enamel, and how this subtle architecture evolved through time. In this article, we used a new methodology based on confocal laser microscopy to reconstruct the enamel microstructure of rodent incisors in three dimensions (3D) with the ameloblasts in situ. We proposed interpretations regarding the possible relationships between the workings of the ameloblasts and the resulting enamel prisms, especially how the phenomenon of decussation is generated. Finally, we were able to represent the two main types of modern rodent incisor microstructures (uniserial and multiserial decussations), as a set of parameters that have been entered into the 3D enamel simulation software Simulenam to generate 3D models that can be digitally manipulated. Associating 2D data of incisor enamel microstructure of fossil rodents and Simulenam, it was then possible to better understand how the various decussation parameters evolved through time and gave rise to the two modern microstructure types from the same ancestral type (pauciserial). This study also confirmed that rodent and artiodactyl enamel do not share the same mechanism of decussation formation. Anat Rec, 302:1195–1209, 2019. © 2018 Wiley Periodicals, Inc.</abstract><cop>Hoboken, USA</cop><pub>John Wiley &amp; Sons, Inc</pub><pmid>30365252</pmid><doi>10.1002/ar.24000</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-9909-0071</orcidid><orcidid>https://orcid.org/0000-0002-4327-5341</orcidid><orcidid>https://orcid.org/0000-0002-2882-0874</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-8486
ispartof Anatomical record (Hoboken, N.J. : 2007), 2019-07, Vol.302 (7), p.1195-1209
issn 1932-8486
1932-8494
language eng
recordid cdi_hal_primary_oai_HAL_hal_01908000v1
source Wiley Online Library Journals Frontfile Complete; Wiley Online Library Free Content
subjects Ameloblasts
Biodiversity
Cellular Biology
Computer Science
Dental enamel
Earth Sciences
Enamel
enamel evolution
enamel microstructure
Incisors
Life Sciences
Microscopy
Microstructure
Modeling and Simulation
Paleontology
Populations and Evolution
Rodentia
Sciences of the Universe
simulation
Subcellular Processes
title Relationships Between Enamel Prism Decussation and Organization of the Ameloblast Layer in Rodent Incisors
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T09%3A29%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Relationships%20Between%20Enamel%20Prism%20Decussation%20and%20Organization%20of%20the%20Ameloblast%20Layer%20in%20Rodent%20Incisors&rft.jtitle=Anatomical%20record%20(Hoboken,%20N.J.%20:%202007)&rft.au=Alloing%E2%80%90S%C3%A9guier,%20L%C3%A9anie&rft.date=2019-07&rft.volume=302&rft.issue=7&rft.spage=1195&rft.epage=1209&rft.pages=1195-1209&rft.issn=1932-8486&rft.eissn=1932-8494&rft_id=info:doi/10.1002/ar.24000&rft_dat=%3Cproquest_hal_p%3E2236362916%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2236362916&rft_id=info:pmid/30365252&rfr_iscdi=true