Tunable conductivity in mesoporous germanium

Germanium-based nanostructures have attracted increasing attention due to favourable electrical and optical properties, which are tunable on the nanoscale. High densities of germanium nanocrystals are synthesized via electrochemical etching, making porous germanium an appealing nanostructured materi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nanotechnology 2018-05, Vol.29 (21), p.215701
Hauptverfasser: Beattie, Meghan N, Bioud, Youcef A, Hobson, David G, Boucherif, Abderraouf, Valdivia, Christopher E, Drouin, Dominique, Arès, Richard, Hinzer, Karin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 21
container_start_page 215701
container_title Nanotechnology
container_volume 29
creator Beattie, Meghan N
Bioud, Youcef A
Hobson, David G
Boucherif, Abderraouf
Valdivia, Christopher E
Drouin, Dominique
Arès, Richard
Hinzer, Karin
description Germanium-based nanostructures have attracted increasing attention due to favourable electrical and optical properties, which are tunable on the nanoscale. High densities of germanium nanocrystals are synthesized via electrochemical etching, making porous germanium an appealing nanostructured material for a variety of applications. In this work, we have demonstrated highly tunable electrical conductivity in mesoporous germanium layers by conducting a systematic study varying crystallite size using thermal annealing, with experimental conductivities ranging from 0.6 to 33 (×10−3) −1 cm−1. The conductivity of as-prepared mesoporous germanium with 70% porosity and crystallite size between 4 and 10 nm is shown to be ∼0.9 × 10−3 −1 cm−1, 5 orders of magnitude smaller than that of bulk p-type germanium. Thermal annealing for 10 min at 400 °C further reduced the conductivity; however, annealing at 450 °C caused a morphological transformation from columnar crystallites to interconnecting granular crystallites and an increase in conductivity by two orders of magnitude relative to as-prepared mesoporous germanium caused by reduced influence of surface states. We developed an electrostatic model relating the carrier concentration and mobility of p-type mesoporous germanium to the nanoscale morphology. Correlation within an order of magnitude was found between modelled and experimental conductivities, limited by variation in sample uniformity and uncertainty in void size and fraction after annealing. Furthermore, theoretical results suggest that mesoporous germanium conductivity could be tuned over four orders of magnitude, leading to optimized hybrid devices.
doi_str_mv 10.1088/1361-6528/aab3f7
format Article
fullrecord <record><control><sourceid>pubmed_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01905594v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>29504511</sourcerecordid><originalsourceid>FETCH-LOGICAL-c404t-eab890da2012841e4c3d26cd25112eb9eda07d9541256d89a5b8c94e63ae67443</originalsourceid><addsrcrecordid>eNp1kMFLwzAUh4Mobk7vnqRXYXXvpUmbHIeoEwZe5jmkSaoda1LadbD_3pbqvCg8CDy-3_uRj5BbhAcEIRaYpBinnIqF1nlSZGdkelqdkylInsWMCTYhV227BUAUFC_JhEoOjCNOyXzTeZ3vXGSCt53Zl4dyf4xKH1WuDXVoQtdGH66ptC-76ppcFHrXupvvd0ben582j6t4_fby-rhcx4YB28dO50KC1RSQCoaOmcTS1FjaN1KXS2c1ZFZyhpSnVkjNc2Ekc2miXZoxlszI_Xj3U-9U3ZSVbo4q6FKtlms17AAlcC7ZAXsWRtY0oW0bV5wCCGqQpAYjajCiRkl95G6M1F1eOXsK_Fj57S9Drbaha3z_W-W1Dz2jKPbDM0BV26Jn53-w_3Z_AXd1fTM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Tunable conductivity in mesoporous germanium</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Beattie, Meghan N ; Bioud, Youcef A ; Hobson, David G ; Boucherif, Abderraouf ; Valdivia, Christopher E ; Drouin, Dominique ; Arès, Richard ; Hinzer, Karin</creator><creatorcontrib>Beattie, Meghan N ; Bioud, Youcef A ; Hobson, David G ; Boucherif, Abderraouf ; Valdivia, Christopher E ; Drouin, Dominique ; Arès, Richard ; Hinzer, Karin</creatorcontrib><description>Germanium-based nanostructures have attracted increasing attention due to favourable electrical and optical properties, which are tunable on the nanoscale. High densities of germanium nanocrystals are synthesized via electrochemical etching, making porous germanium an appealing nanostructured material for a variety of applications. In this work, we have demonstrated highly tunable electrical conductivity in mesoporous germanium layers by conducting a systematic study varying crystallite size using thermal annealing, with experimental conductivities ranging from 0.6 to 33 (×10−3) −1 cm−1. The conductivity of as-prepared mesoporous germanium with 70% porosity and crystallite size between 4 and 10 nm is shown to be ∼0.9 × 10−3 −1 cm−1, 5 orders of magnitude smaller than that of bulk p-type germanium. Thermal annealing for 10 min at 400 °C further reduced the conductivity; however, annealing at 450 °C caused a morphological transformation from columnar crystallites to interconnecting granular crystallites and an increase in conductivity by two orders of magnitude relative to as-prepared mesoporous germanium caused by reduced influence of surface states. We developed an electrostatic model relating the carrier concentration and mobility of p-type mesoporous germanium to the nanoscale morphology. Correlation within an order of magnitude was found between modelled and experimental conductivities, limited by variation in sample uniformity and uncertainty in void size and fraction after annealing. Furthermore, theoretical results suggest that mesoporous germanium conductivity could be tuned over four orders of magnitude, leading to optimized hybrid devices.</description><identifier>ISSN: 0957-4484</identifier><identifier>EISSN: 1361-6528</identifier><identifier>DOI: 10.1088/1361-6528/aab3f7</identifier><identifier>PMID: 29504511</identifier><identifier>CODEN: NNOTER</identifier><language>eng</language><publisher>England: IOP Publishing</publisher><subject>bipolar electrochemical etching ; electrical conductivity ; electrical transport ; Engineering Sciences ; nanostructured germanium ; porous germanium ; surface states ; thermal annealing</subject><ispartof>Nanotechnology, 2018-05, Vol.29 (21), p.215701</ispartof><rights>2018 IOP Publishing Ltd</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c404t-eab890da2012841e4c3d26cd25112eb9eda07d9541256d89a5b8c94e63ae67443</citedby><cites>FETCH-LOGICAL-c404t-eab890da2012841e4c3d26cd25112eb9eda07d9541256d89a5b8c94e63ae67443</cites><orcidid>0000-0001-5160-1138 ; 0000-0002-6072-2959 ; 0000-0002-2414-6288 ; 0000-0003-2156-967X ; 0000-0002-7168-1988 ; 0000-0001-7697-9735</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1361-6528/aab3f7/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>230,314,776,780,881,27901,27902,53821,53868</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29504511$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-01905594$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Beattie, Meghan N</creatorcontrib><creatorcontrib>Bioud, Youcef A</creatorcontrib><creatorcontrib>Hobson, David G</creatorcontrib><creatorcontrib>Boucherif, Abderraouf</creatorcontrib><creatorcontrib>Valdivia, Christopher E</creatorcontrib><creatorcontrib>Drouin, Dominique</creatorcontrib><creatorcontrib>Arès, Richard</creatorcontrib><creatorcontrib>Hinzer, Karin</creatorcontrib><title>Tunable conductivity in mesoporous germanium</title><title>Nanotechnology</title><addtitle>NANO</addtitle><addtitle>Nanotechnology</addtitle><description>Germanium-based nanostructures have attracted increasing attention due to favourable electrical and optical properties, which are tunable on the nanoscale. High densities of germanium nanocrystals are synthesized via electrochemical etching, making porous germanium an appealing nanostructured material for a variety of applications. In this work, we have demonstrated highly tunable electrical conductivity in mesoporous germanium layers by conducting a systematic study varying crystallite size using thermal annealing, with experimental conductivities ranging from 0.6 to 33 (×10−3) −1 cm−1. The conductivity of as-prepared mesoporous germanium with 70% porosity and crystallite size between 4 and 10 nm is shown to be ∼0.9 × 10−3 −1 cm−1, 5 orders of magnitude smaller than that of bulk p-type germanium. Thermal annealing for 10 min at 400 °C further reduced the conductivity; however, annealing at 450 °C caused a morphological transformation from columnar crystallites to interconnecting granular crystallites and an increase in conductivity by two orders of magnitude relative to as-prepared mesoporous germanium caused by reduced influence of surface states. We developed an electrostatic model relating the carrier concentration and mobility of p-type mesoporous germanium to the nanoscale morphology. Correlation within an order of magnitude was found between modelled and experimental conductivities, limited by variation in sample uniformity and uncertainty in void size and fraction after annealing. Furthermore, theoretical results suggest that mesoporous germanium conductivity could be tuned over four orders of magnitude, leading to optimized hybrid devices.</description><subject>bipolar electrochemical etching</subject><subject>electrical conductivity</subject><subject>electrical transport</subject><subject>Engineering Sciences</subject><subject>nanostructured germanium</subject><subject>porous germanium</subject><subject>surface states</subject><subject>thermal annealing</subject><issn>0957-4484</issn><issn>1361-6528</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kMFLwzAUh4Mobk7vnqRXYXXvpUmbHIeoEwZe5jmkSaoda1LadbD_3pbqvCg8CDy-3_uRj5BbhAcEIRaYpBinnIqF1nlSZGdkelqdkylInsWMCTYhV227BUAUFC_JhEoOjCNOyXzTeZ3vXGSCt53Zl4dyf4xKH1WuDXVoQtdGH66ptC-76ppcFHrXupvvd0ben582j6t4_fby-rhcx4YB28dO50KC1RSQCoaOmcTS1FjaN1KXS2c1ZFZyhpSnVkjNc2Ekc2miXZoxlszI_Xj3U-9U3ZSVbo4q6FKtlms17AAlcC7ZAXsWRtY0oW0bV5wCCGqQpAYjajCiRkl95G6M1F1eOXsK_Fj57S9Drbaha3z_W-W1Dz2jKPbDM0BV26Jn53-w_3Z_AXd1fTM</recordid><startdate>20180525</startdate><enddate>20180525</enddate><creator>Beattie, Meghan N</creator><creator>Bioud, Youcef A</creator><creator>Hobson, David G</creator><creator>Boucherif, Abderraouf</creator><creator>Valdivia, Christopher E</creator><creator>Drouin, Dominique</creator><creator>Arès, Richard</creator><creator>Hinzer, Karin</creator><general>IOP Publishing</general><general>Institute of Physics</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0001-5160-1138</orcidid><orcidid>https://orcid.org/0000-0002-6072-2959</orcidid><orcidid>https://orcid.org/0000-0002-2414-6288</orcidid><orcidid>https://orcid.org/0000-0003-2156-967X</orcidid><orcidid>https://orcid.org/0000-0002-7168-1988</orcidid><orcidid>https://orcid.org/0000-0001-7697-9735</orcidid></search><sort><creationdate>20180525</creationdate><title>Tunable conductivity in mesoporous germanium</title><author>Beattie, Meghan N ; Bioud, Youcef A ; Hobson, David G ; Boucherif, Abderraouf ; Valdivia, Christopher E ; Drouin, Dominique ; Arès, Richard ; Hinzer, Karin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c404t-eab890da2012841e4c3d26cd25112eb9eda07d9541256d89a5b8c94e63ae67443</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>bipolar electrochemical etching</topic><topic>electrical conductivity</topic><topic>electrical transport</topic><topic>Engineering Sciences</topic><topic>nanostructured germanium</topic><topic>porous germanium</topic><topic>surface states</topic><topic>thermal annealing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Beattie, Meghan N</creatorcontrib><creatorcontrib>Bioud, Youcef A</creatorcontrib><creatorcontrib>Hobson, David G</creatorcontrib><creatorcontrib>Boucherif, Abderraouf</creatorcontrib><creatorcontrib>Valdivia, Christopher E</creatorcontrib><creatorcontrib>Drouin, Dominique</creatorcontrib><creatorcontrib>Arès, Richard</creatorcontrib><creatorcontrib>Hinzer, Karin</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Nanotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Beattie, Meghan N</au><au>Bioud, Youcef A</au><au>Hobson, David G</au><au>Boucherif, Abderraouf</au><au>Valdivia, Christopher E</au><au>Drouin, Dominique</au><au>Arès, Richard</au><au>Hinzer, Karin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tunable conductivity in mesoporous germanium</atitle><jtitle>Nanotechnology</jtitle><stitle>NANO</stitle><addtitle>Nanotechnology</addtitle><date>2018-05-25</date><risdate>2018</risdate><volume>29</volume><issue>21</issue><spage>215701</spage><pages>215701-</pages><issn>0957-4484</issn><eissn>1361-6528</eissn><coden>NNOTER</coden><abstract>Germanium-based nanostructures have attracted increasing attention due to favourable electrical and optical properties, which are tunable on the nanoscale. High densities of germanium nanocrystals are synthesized via electrochemical etching, making porous germanium an appealing nanostructured material for a variety of applications. In this work, we have demonstrated highly tunable electrical conductivity in mesoporous germanium layers by conducting a systematic study varying crystallite size using thermal annealing, with experimental conductivities ranging from 0.6 to 33 (×10−3) −1 cm−1. The conductivity of as-prepared mesoporous germanium with 70% porosity and crystallite size between 4 and 10 nm is shown to be ∼0.9 × 10−3 −1 cm−1, 5 orders of magnitude smaller than that of bulk p-type germanium. Thermal annealing for 10 min at 400 °C further reduced the conductivity; however, annealing at 450 °C caused a morphological transformation from columnar crystallites to interconnecting granular crystallites and an increase in conductivity by two orders of magnitude relative to as-prepared mesoporous germanium caused by reduced influence of surface states. We developed an electrostatic model relating the carrier concentration and mobility of p-type mesoporous germanium to the nanoscale morphology. Correlation within an order of magnitude was found between modelled and experimental conductivities, limited by variation in sample uniformity and uncertainty in void size and fraction after annealing. Furthermore, theoretical results suggest that mesoporous germanium conductivity could be tuned over four orders of magnitude, leading to optimized hybrid devices.</abstract><cop>England</cop><pub>IOP Publishing</pub><pmid>29504511</pmid><doi>10.1088/1361-6528/aab3f7</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-5160-1138</orcidid><orcidid>https://orcid.org/0000-0002-6072-2959</orcidid><orcidid>https://orcid.org/0000-0002-2414-6288</orcidid><orcidid>https://orcid.org/0000-0003-2156-967X</orcidid><orcidid>https://orcid.org/0000-0002-7168-1988</orcidid><orcidid>https://orcid.org/0000-0001-7697-9735</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0957-4484
ispartof Nanotechnology, 2018-05, Vol.29 (21), p.215701
issn 0957-4484
1361-6528
language eng
recordid cdi_hal_primary_oai_HAL_hal_01905594v1
source IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link
subjects bipolar electrochemical etching
electrical conductivity
electrical transport
Engineering Sciences
nanostructured germanium
porous germanium
surface states
thermal annealing
title Tunable conductivity in mesoporous germanium
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T15%3A07%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tunable%20conductivity%20in%20mesoporous%20germanium&rft.jtitle=Nanotechnology&rft.au=Beattie,%20Meghan%20N&rft.date=2018-05-25&rft.volume=29&rft.issue=21&rft.spage=215701&rft.pages=215701-&rft.issn=0957-4484&rft.eissn=1361-6528&rft.coden=NNOTER&rft_id=info:doi/10.1088/1361-6528/aab3f7&rft_dat=%3Cpubmed_hal_p%3E29504511%3C/pubmed_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/29504511&rfr_iscdi=true