Tunable conductivity in mesoporous germanium
Germanium-based nanostructures have attracted increasing attention due to favourable electrical and optical properties, which are tunable on the nanoscale. High densities of germanium nanocrystals are synthesized via electrochemical etching, making porous germanium an appealing nanostructured materi...
Gespeichert in:
Veröffentlicht in: | Nanotechnology 2018-05, Vol.29 (21), p.215701 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 21 |
container_start_page | 215701 |
container_title | Nanotechnology |
container_volume | 29 |
creator | Beattie, Meghan N Bioud, Youcef A Hobson, David G Boucherif, Abderraouf Valdivia, Christopher E Drouin, Dominique Arès, Richard Hinzer, Karin |
description | Germanium-based nanostructures have attracted increasing attention due to favourable electrical and optical properties, which are tunable on the nanoscale. High densities of germanium nanocrystals are synthesized via electrochemical etching, making porous germanium an appealing nanostructured material for a variety of applications. In this work, we have demonstrated highly tunable electrical conductivity in mesoporous germanium layers by conducting a systematic study varying crystallite size using thermal annealing, with experimental conductivities ranging from 0.6 to 33 (×10−3) −1 cm−1. The conductivity of as-prepared mesoporous germanium with 70% porosity and crystallite size between 4 and 10 nm is shown to be ∼0.9 × 10−3 −1 cm−1, 5 orders of magnitude smaller than that of bulk p-type germanium. Thermal annealing for 10 min at 400 °C further reduced the conductivity; however, annealing at 450 °C caused a morphological transformation from columnar crystallites to interconnecting granular crystallites and an increase in conductivity by two orders of magnitude relative to as-prepared mesoporous germanium caused by reduced influence of surface states. We developed an electrostatic model relating the carrier concentration and mobility of p-type mesoporous germanium to the nanoscale morphology. Correlation within an order of magnitude was found between modelled and experimental conductivities, limited by variation in sample uniformity and uncertainty in void size and fraction after annealing. Furthermore, theoretical results suggest that mesoporous germanium conductivity could be tuned over four orders of magnitude, leading to optimized hybrid devices. |
doi_str_mv | 10.1088/1361-6528/aab3f7 |
format | Article |
fullrecord | <record><control><sourceid>pubmed_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01905594v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>29504511</sourcerecordid><originalsourceid>FETCH-LOGICAL-c404t-eab890da2012841e4c3d26cd25112eb9eda07d9541256d89a5b8c94e63ae67443</originalsourceid><addsrcrecordid>eNp1kMFLwzAUh4Mobk7vnqRXYXXvpUmbHIeoEwZe5jmkSaoda1LadbD_3pbqvCg8CDy-3_uRj5BbhAcEIRaYpBinnIqF1nlSZGdkelqdkylInsWMCTYhV227BUAUFC_JhEoOjCNOyXzTeZ3vXGSCt53Zl4dyf4xKH1WuDXVoQtdGH66ptC-76ppcFHrXupvvd0ben582j6t4_fby-rhcx4YB28dO50KC1RSQCoaOmcTS1FjaN1KXS2c1ZFZyhpSnVkjNc2Ekc2miXZoxlszI_Xj3U-9U3ZSVbo4q6FKtlms17AAlcC7ZAXsWRtY0oW0bV5wCCGqQpAYjajCiRkl95G6M1F1eOXsK_Fj57S9Drbaha3z_W-W1Dz2jKPbDM0BV26Jn53-w_3Z_AXd1fTM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Tunable conductivity in mesoporous germanium</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Beattie, Meghan N ; Bioud, Youcef A ; Hobson, David G ; Boucherif, Abderraouf ; Valdivia, Christopher E ; Drouin, Dominique ; Arès, Richard ; Hinzer, Karin</creator><creatorcontrib>Beattie, Meghan N ; Bioud, Youcef A ; Hobson, David G ; Boucherif, Abderraouf ; Valdivia, Christopher E ; Drouin, Dominique ; Arès, Richard ; Hinzer, Karin</creatorcontrib><description>Germanium-based nanostructures have attracted increasing attention due to favourable electrical and optical properties, which are tunable on the nanoscale. High densities of germanium nanocrystals are synthesized via electrochemical etching, making porous germanium an appealing nanostructured material for a variety of applications. In this work, we have demonstrated highly tunable electrical conductivity in mesoporous germanium layers by conducting a systematic study varying crystallite size using thermal annealing, with experimental conductivities ranging from 0.6 to 33 (×10−3) −1 cm−1. The conductivity of as-prepared mesoporous germanium with 70% porosity and crystallite size between 4 and 10 nm is shown to be ∼0.9 × 10−3 −1 cm−1, 5 orders of magnitude smaller than that of bulk p-type germanium. Thermal annealing for 10 min at 400 °C further reduced the conductivity; however, annealing at 450 °C caused a morphological transformation from columnar crystallites to interconnecting granular crystallites and an increase in conductivity by two orders of magnitude relative to as-prepared mesoporous germanium caused by reduced influence of surface states. We developed an electrostatic model relating the carrier concentration and mobility of p-type mesoporous germanium to the nanoscale morphology. Correlation within an order of magnitude was found between modelled and experimental conductivities, limited by variation in sample uniformity and uncertainty in void size and fraction after annealing. Furthermore, theoretical results suggest that mesoporous germanium conductivity could be tuned over four orders of magnitude, leading to optimized hybrid devices.</description><identifier>ISSN: 0957-4484</identifier><identifier>EISSN: 1361-6528</identifier><identifier>DOI: 10.1088/1361-6528/aab3f7</identifier><identifier>PMID: 29504511</identifier><identifier>CODEN: NNOTER</identifier><language>eng</language><publisher>England: IOP Publishing</publisher><subject>bipolar electrochemical etching ; electrical conductivity ; electrical transport ; Engineering Sciences ; nanostructured germanium ; porous germanium ; surface states ; thermal annealing</subject><ispartof>Nanotechnology, 2018-05, Vol.29 (21), p.215701</ispartof><rights>2018 IOP Publishing Ltd</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c404t-eab890da2012841e4c3d26cd25112eb9eda07d9541256d89a5b8c94e63ae67443</citedby><cites>FETCH-LOGICAL-c404t-eab890da2012841e4c3d26cd25112eb9eda07d9541256d89a5b8c94e63ae67443</cites><orcidid>0000-0001-5160-1138 ; 0000-0002-6072-2959 ; 0000-0002-2414-6288 ; 0000-0003-2156-967X ; 0000-0002-7168-1988 ; 0000-0001-7697-9735</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1361-6528/aab3f7/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>230,314,776,780,881,27901,27902,53821,53868</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29504511$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-01905594$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Beattie, Meghan N</creatorcontrib><creatorcontrib>Bioud, Youcef A</creatorcontrib><creatorcontrib>Hobson, David G</creatorcontrib><creatorcontrib>Boucherif, Abderraouf</creatorcontrib><creatorcontrib>Valdivia, Christopher E</creatorcontrib><creatorcontrib>Drouin, Dominique</creatorcontrib><creatorcontrib>Arès, Richard</creatorcontrib><creatorcontrib>Hinzer, Karin</creatorcontrib><title>Tunable conductivity in mesoporous germanium</title><title>Nanotechnology</title><addtitle>NANO</addtitle><addtitle>Nanotechnology</addtitle><description>Germanium-based nanostructures have attracted increasing attention due to favourable electrical and optical properties, which are tunable on the nanoscale. High densities of germanium nanocrystals are synthesized via electrochemical etching, making porous germanium an appealing nanostructured material for a variety of applications. In this work, we have demonstrated highly tunable electrical conductivity in mesoporous germanium layers by conducting a systematic study varying crystallite size using thermal annealing, with experimental conductivities ranging from 0.6 to 33 (×10−3) −1 cm−1. The conductivity of as-prepared mesoporous germanium with 70% porosity and crystallite size between 4 and 10 nm is shown to be ∼0.9 × 10−3 −1 cm−1, 5 orders of magnitude smaller than that of bulk p-type germanium. Thermal annealing for 10 min at 400 °C further reduced the conductivity; however, annealing at 450 °C caused a morphological transformation from columnar crystallites to interconnecting granular crystallites and an increase in conductivity by two orders of magnitude relative to as-prepared mesoporous germanium caused by reduced influence of surface states. We developed an electrostatic model relating the carrier concentration and mobility of p-type mesoporous germanium to the nanoscale morphology. Correlation within an order of magnitude was found between modelled and experimental conductivities, limited by variation in sample uniformity and uncertainty in void size and fraction after annealing. Furthermore, theoretical results suggest that mesoporous germanium conductivity could be tuned over four orders of magnitude, leading to optimized hybrid devices.</description><subject>bipolar electrochemical etching</subject><subject>electrical conductivity</subject><subject>electrical transport</subject><subject>Engineering Sciences</subject><subject>nanostructured germanium</subject><subject>porous germanium</subject><subject>surface states</subject><subject>thermal annealing</subject><issn>0957-4484</issn><issn>1361-6528</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kMFLwzAUh4Mobk7vnqRXYXXvpUmbHIeoEwZe5jmkSaoda1LadbD_3pbqvCg8CDy-3_uRj5BbhAcEIRaYpBinnIqF1nlSZGdkelqdkylInsWMCTYhV227BUAUFC_JhEoOjCNOyXzTeZ3vXGSCt53Zl4dyf4xKH1WuDXVoQtdGH66ptC-76ppcFHrXupvvd0ben582j6t4_fby-rhcx4YB28dO50KC1RSQCoaOmcTS1FjaN1KXS2c1ZFZyhpSnVkjNc2Ekc2miXZoxlszI_Xj3U-9U3ZSVbo4q6FKtlms17AAlcC7ZAXsWRtY0oW0bV5wCCGqQpAYjajCiRkl95G6M1F1eOXsK_Fj57S9Drbaha3z_W-W1Dz2jKPbDM0BV26Jn53-w_3Z_AXd1fTM</recordid><startdate>20180525</startdate><enddate>20180525</enddate><creator>Beattie, Meghan N</creator><creator>Bioud, Youcef A</creator><creator>Hobson, David G</creator><creator>Boucherif, Abderraouf</creator><creator>Valdivia, Christopher E</creator><creator>Drouin, Dominique</creator><creator>Arès, Richard</creator><creator>Hinzer, Karin</creator><general>IOP Publishing</general><general>Institute of Physics</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0001-5160-1138</orcidid><orcidid>https://orcid.org/0000-0002-6072-2959</orcidid><orcidid>https://orcid.org/0000-0002-2414-6288</orcidid><orcidid>https://orcid.org/0000-0003-2156-967X</orcidid><orcidid>https://orcid.org/0000-0002-7168-1988</orcidid><orcidid>https://orcid.org/0000-0001-7697-9735</orcidid></search><sort><creationdate>20180525</creationdate><title>Tunable conductivity in mesoporous germanium</title><author>Beattie, Meghan N ; Bioud, Youcef A ; Hobson, David G ; Boucherif, Abderraouf ; Valdivia, Christopher E ; Drouin, Dominique ; Arès, Richard ; Hinzer, Karin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c404t-eab890da2012841e4c3d26cd25112eb9eda07d9541256d89a5b8c94e63ae67443</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>bipolar electrochemical etching</topic><topic>electrical conductivity</topic><topic>electrical transport</topic><topic>Engineering Sciences</topic><topic>nanostructured germanium</topic><topic>porous germanium</topic><topic>surface states</topic><topic>thermal annealing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Beattie, Meghan N</creatorcontrib><creatorcontrib>Bioud, Youcef A</creatorcontrib><creatorcontrib>Hobson, David G</creatorcontrib><creatorcontrib>Boucherif, Abderraouf</creatorcontrib><creatorcontrib>Valdivia, Christopher E</creatorcontrib><creatorcontrib>Drouin, Dominique</creatorcontrib><creatorcontrib>Arès, Richard</creatorcontrib><creatorcontrib>Hinzer, Karin</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Nanotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Beattie, Meghan N</au><au>Bioud, Youcef A</au><au>Hobson, David G</au><au>Boucherif, Abderraouf</au><au>Valdivia, Christopher E</au><au>Drouin, Dominique</au><au>Arès, Richard</au><au>Hinzer, Karin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tunable conductivity in mesoporous germanium</atitle><jtitle>Nanotechnology</jtitle><stitle>NANO</stitle><addtitle>Nanotechnology</addtitle><date>2018-05-25</date><risdate>2018</risdate><volume>29</volume><issue>21</issue><spage>215701</spage><pages>215701-</pages><issn>0957-4484</issn><eissn>1361-6528</eissn><coden>NNOTER</coden><abstract>Germanium-based nanostructures have attracted increasing attention due to favourable electrical and optical properties, which are tunable on the nanoscale. High densities of germanium nanocrystals are synthesized via electrochemical etching, making porous germanium an appealing nanostructured material for a variety of applications. In this work, we have demonstrated highly tunable electrical conductivity in mesoporous germanium layers by conducting a systematic study varying crystallite size using thermal annealing, with experimental conductivities ranging from 0.6 to 33 (×10−3) −1 cm−1. The conductivity of as-prepared mesoporous germanium with 70% porosity and crystallite size between 4 and 10 nm is shown to be ∼0.9 × 10−3 −1 cm−1, 5 orders of magnitude smaller than that of bulk p-type germanium. Thermal annealing for 10 min at 400 °C further reduced the conductivity; however, annealing at 450 °C caused a morphological transformation from columnar crystallites to interconnecting granular crystallites and an increase in conductivity by two orders of magnitude relative to as-prepared mesoporous germanium caused by reduced influence of surface states. We developed an electrostatic model relating the carrier concentration and mobility of p-type mesoporous germanium to the nanoscale morphology. Correlation within an order of magnitude was found between modelled and experimental conductivities, limited by variation in sample uniformity and uncertainty in void size and fraction after annealing. Furthermore, theoretical results suggest that mesoporous germanium conductivity could be tuned over four orders of magnitude, leading to optimized hybrid devices.</abstract><cop>England</cop><pub>IOP Publishing</pub><pmid>29504511</pmid><doi>10.1088/1361-6528/aab3f7</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-5160-1138</orcidid><orcidid>https://orcid.org/0000-0002-6072-2959</orcidid><orcidid>https://orcid.org/0000-0002-2414-6288</orcidid><orcidid>https://orcid.org/0000-0003-2156-967X</orcidid><orcidid>https://orcid.org/0000-0002-7168-1988</orcidid><orcidid>https://orcid.org/0000-0001-7697-9735</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0957-4484 |
ispartof | Nanotechnology, 2018-05, Vol.29 (21), p.215701 |
issn | 0957-4484 1361-6528 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_01905594v1 |
source | IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link |
subjects | bipolar electrochemical etching electrical conductivity electrical transport Engineering Sciences nanostructured germanium porous germanium surface states thermal annealing |
title | Tunable conductivity in mesoporous germanium |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T15%3A07%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tunable%20conductivity%20in%20mesoporous%20germanium&rft.jtitle=Nanotechnology&rft.au=Beattie,%20Meghan%20N&rft.date=2018-05-25&rft.volume=29&rft.issue=21&rft.spage=215701&rft.pages=215701-&rft.issn=0957-4484&rft.eissn=1361-6528&rft.coden=NNOTER&rft_id=info:doi/10.1088/1361-6528/aab3f7&rft_dat=%3Cpubmed_hal_p%3E29504511%3C/pubmed_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/29504511&rfr_iscdi=true |