Effects of soil process formalisms and forcing factors on simulated organic carbon depth-distributions in soils

Soil organic carbon (OC) sequestration (i.e. the capture and long-term storage of atmospheric CO2) is being considered as a possible solution to mitigate climate change, notably through land use change (conversion of cropped land into pasture) and conservation agricultural practices (reduced tillage...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Science of the total environment 2019-02, Vol.652, p.523-537
Hauptverfasser: Keyvanshokouhi, S., Cornu, S., Lafolie, F., Balesdent, J., Guenet, B., Moitrier, N., Nougier, C., Finke, P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 537
container_issue
container_start_page 523
container_title The Science of the total environment
container_volume 652
creator Keyvanshokouhi, S.
Cornu, S.
Lafolie, F.
Balesdent, J.
Guenet, B.
Moitrier, N.
Nougier, C.
Finke, P.
description Soil organic carbon (OC) sequestration (i.e. the capture and long-term storage of atmospheric CO2) is being considered as a possible solution to mitigate climate change, notably through land use change (conversion of cropped land into pasture) and conservation agricultural practices (reduced tillage). Subsoil horizons (from 30 cm to 1 m) contribute to ca. half the total amount of soil OC, and the slow dynamics of deep OC as well as the relationships between the OC depth distribution and changes in land use and tillage practices still need to be modelled. We developed a fully modular, mechanistic OC depth distribution model, named OC-VGEN. This model includes OC dynamics, plant development, transfer of water, gas and heat, mixing by bioturbation and tillage as processes and climate and land use as boundary conditions. OC-VGEN allowed us to test the impact of 1) different numerical representations of root depth distribution, decomposition coefficients and bioturbation; 2) evolution of forcing factors such as land use, agricultural practices and climate on OC depth distribution at the century scale. We used the model to simulate decadal to century time scale experiments in Luvisols with different land uses (pasture and crop) and tillage practices (conventional and reduced) as well as projection scenarios of climate and land use at the horizon of 2100. We showed that, among the different tested formalisms/parametrizations: 1) the sensitivity of the simulated OC depth distribution to the tested numerical representations depended on the considered land use; 2) different numerical representations may accurately fit past soil OC evolution while leading to different OC stock predictions when tested for future forcing conditions (change of land use, tillage practice or climate). [Display omitted] •First OC stock modelling considering most soil processes and internal feedbacks•Testing of different formalisms existing in the literature for soil OC processes•Importance of root depth distribution in simulating OC depth distribution•Importance of bioturbation in simulating OC depth distribution•Importance of OC decomposition rate coefficients in simulating OC dynamics
doi_str_mv 10.1016/j.scitotenv.2018.10.236
format Article
fullrecord <record><control><sourceid>elsevier_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01904523v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0048969718341329</els_id><sourcerecordid>S0048969718341329</sourcerecordid><originalsourceid>FETCH-LOGICAL-c454t-712a9dd0b04ad31acd2cde372eff996483795df0877688d0c6c35e015e5c05843</originalsourceid><addsrcrecordid>eNqFkMtOwzAQRS0EoqXwC-Ati5RxnMTOskK8pEpsYG25frSukriy3Ur8PQ6FbpmNNTP33pEPQncE5gRI87CdR-WST2Y4zEsgPE_nJW3O0JRw1hYEyuYcTQEqXrRNyyboKsYt5GKcXKIJBdpwwssp8k_WGpUi9hZH7zq8C16ZGLH1oZedi33EctBjq9ywxlaq5EOWDzi6ft_JZDT2YS0Hp7CSYZUX2uzSptAupuBW--T8ELEbfuLjNbqwsovm5vedoc_np4_H12L5_vL2uFgWqqqrVDBSylZrWEElNSVS6VJpQ1lprG3bpuKUtbW2wBlrONegGkVrA6Q2tYKaV3SG7o-5G9mJXXC9DF_CSydeF0sxzoC0UNUlPZCsZUetCj7GYOzJQECMuMVWnHCLEfe4yLiz8_bo3O1XvdEn3x_fLFgcBSb_9eBMGIPMoIx2IWMX2rt_j3wDqImXbQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Effects of soil process formalisms and forcing factors on simulated organic carbon depth-distributions in soils</title><source>Elsevier ScienceDirect Journals</source><creator>Keyvanshokouhi, S. ; Cornu, S. ; Lafolie, F. ; Balesdent, J. ; Guenet, B. ; Moitrier, N. ; Nougier, C. ; Finke, P.</creator><creatorcontrib>Keyvanshokouhi, S. ; Cornu, S. ; Lafolie, F. ; Balesdent, J. ; Guenet, B. ; Moitrier, N. ; Nougier, C. ; Finke, P.</creatorcontrib><description>Soil organic carbon (OC) sequestration (i.e. the capture and long-term storage of atmospheric CO2) is being considered as a possible solution to mitigate climate change, notably through land use change (conversion of cropped land into pasture) and conservation agricultural practices (reduced tillage). Subsoil horizons (from 30 cm to 1 m) contribute to ca. half the total amount of soil OC, and the slow dynamics of deep OC as well as the relationships between the OC depth distribution and changes in land use and tillage practices still need to be modelled. We developed a fully modular, mechanistic OC depth distribution model, named OC-VGEN. This model includes OC dynamics, plant development, transfer of water, gas and heat, mixing by bioturbation and tillage as processes and climate and land use as boundary conditions. OC-VGEN allowed us to test the impact of 1) different numerical representations of root depth distribution, decomposition coefficients and bioturbation; 2) evolution of forcing factors such as land use, agricultural practices and climate on OC depth distribution at the century scale. We used the model to simulate decadal to century time scale experiments in Luvisols with different land uses (pasture and crop) and tillage practices (conventional and reduced) as well as projection scenarios of climate and land use at the horizon of 2100. We showed that, among the different tested formalisms/parametrizations: 1) the sensitivity of the simulated OC depth distribution to the tested numerical representations depended on the considered land use; 2) different numerical representations may accurately fit past soil OC evolution while leading to different OC stock predictions when tested for future forcing conditions (change of land use, tillage practice or climate). [Display omitted] •First OC stock modelling considering most soil processes and internal feedbacks•Testing of different formalisms existing in the literature for soil OC processes•Importance of root depth distribution in simulating OC depth distribution•Importance of bioturbation in simulating OC depth distribution•Importance of OC decomposition rate coefficients in simulating OC dynamics</description><identifier>ISSN: 0048-9697</identifier><identifier>EISSN: 1879-1026</identifier><identifier>DOI: 10.1016/j.scitotenv.2018.10.236</identifier><identifier>PMID: 30368182</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Agricultural sciences ; Climate change ; Earth Sciences ; Environmental Sciences ; Geochemistry ; Global Changes ; Life Sciences ; Mineralogy ; Model formalisms ; OC projection ; Organic matter ; Pasture ; Reduced tillage ; Sciences of the Universe ; Soil study</subject><ispartof>The Science of the total environment, 2019-02, Vol.652, p.523-537</ispartof><rights>2018 Elsevier B.V.</rights><rights>Copyright © 2018 Elsevier B.V. All rights reserved.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c454t-712a9dd0b04ad31acd2cde372eff996483795df0877688d0c6c35e015e5c05843</citedby><cites>FETCH-LOGICAL-c454t-712a9dd0b04ad31acd2cde372eff996483795df0877688d0c6c35e015e5c05843</cites><orcidid>0000-0002-2433-5898 ; 0009-0001-4561-6189 ; 0000-0002-1084-1976 ; 0000-0002-4947-5221 ; 0000-0002-4311-8645 ; 0009-0006-4291-5016</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0048969718341329$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3536,27903,27904,65309</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30368182$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-01904523$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Keyvanshokouhi, S.</creatorcontrib><creatorcontrib>Cornu, S.</creatorcontrib><creatorcontrib>Lafolie, F.</creatorcontrib><creatorcontrib>Balesdent, J.</creatorcontrib><creatorcontrib>Guenet, B.</creatorcontrib><creatorcontrib>Moitrier, N.</creatorcontrib><creatorcontrib>Nougier, C.</creatorcontrib><creatorcontrib>Finke, P.</creatorcontrib><title>Effects of soil process formalisms and forcing factors on simulated organic carbon depth-distributions in soils</title><title>The Science of the total environment</title><addtitle>Sci Total Environ</addtitle><description>Soil organic carbon (OC) sequestration (i.e. the capture and long-term storage of atmospheric CO2) is being considered as a possible solution to mitigate climate change, notably through land use change (conversion of cropped land into pasture) and conservation agricultural practices (reduced tillage). Subsoil horizons (from 30 cm to 1 m) contribute to ca. half the total amount of soil OC, and the slow dynamics of deep OC as well as the relationships between the OC depth distribution and changes in land use and tillage practices still need to be modelled. We developed a fully modular, mechanistic OC depth distribution model, named OC-VGEN. This model includes OC dynamics, plant development, transfer of water, gas and heat, mixing by bioturbation and tillage as processes and climate and land use as boundary conditions. OC-VGEN allowed us to test the impact of 1) different numerical representations of root depth distribution, decomposition coefficients and bioturbation; 2) evolution of forcing factors such as land use, agricultural practices and climate on OC depth distribution at the century scale. We used the model to simulate decadal to century time scale experiments in Luvisols with different land uses (pasture and crop) and tillage practices (conventional and reduced) as well as projection scenarios of climate and land use at the horizon of 2100. We showed that, among the different tested formalisms/parametrizations: 1) the sensitivity of the simulated OC depth distribution to the tested numerical representations depended on the considered land use; 2) different numerical representations may accurately fit past soil OC evolution while leading to different OC stock predictions when tested for future forcing conditions (change of land use, tillage practice or climate). [Display omitted] •First OC stock modelling considering most soil processes and internal feedbacks•Testing of different formalisms existing in the literature for soil OC processes•Importance of root depth distribution in simulating OC depth distribution•Importance of bioturbation in simulating OC depth distribution•Importance of OC decomposition rate coefficients in simulating OC dynamics</description><subject>Agricultural sciences</subject><subject>Climate change</subject><subject>Earth Sciences</subject><subject>Environmental Sciences</subject><subject>Geochemistry</subject><subject>Global Changes</subject><subject>Life Sciences</subject><subject>Mineralogy</subject><subject>Model formalisms</subject><subject>OC projection</subject><subject>Organic matter</subject><subject>Pasture</subject><subject>Reduced tillage</subject><subject>Sciences of the Universe</subject><subject>Soil study</subject><issn>0048-9697</issn><issn>1879-1026</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqFkMtOwzAQRS0EoqXwC-Ati5RxnMTOskK8pEpsYG25frSukriy3Ur8PQ6FbpmNNTP33pEPQncE5gRI87CdR-WST2Y4zEsgPE_nJW3O0JRw1hYEyuYcTQEqXrRNyyboKsYt5GKcXKIJBdpwwssp8k_WGpUi9hZH7zq8C16ZGLH1oZedi33EctBjq9ywxlaq5EOWDzi6ft_JZDT2YS0Hp7CSYZUX2uzSptAupuBW--T8ELEbfuLjNbqwsovm5vedoc_np4_H12L5_vL2uFgWqqqrVDBSylZrWEElNSVS6VJpQ1lprG3bpuKUtbW2wBlrONegGkVrA6Q2tYKaV3SG7o-5G9mJXXC9DF_CSydeF0sxzoC0UNUlPZCsZUetCj7GYOzJQECMuMVWnHCLEfe4yLiz8_bo3O1XvdEn3x_fLFgcBSb_9eBMGIPMoIx2IWMX2rt_j3wDqImXbQ</recordid><startdate>20190220</startdate><enddate>20190220</enddate><creator>Keyvanshokouhi, S.</creator><creator>Cornu, S.</creator><creator>Lafolie, F.</creator><creator>Balesdent, J.</creator><creator>Guenet, B.</creator><creator>Moitrier, N.</creator><creator>Nougier, C.</creator><creator>Finke, P.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-2433-5898</orcidid><orcidid>https://orcid.org/0009-0001-4561-6189</orcidid><orcidid>https://orcid.org/0000-0002-1084-1976</orcidid><orcidid>https://orcid.org/0000-0002-4947-5221</orcidid><orcidid>https://orcid.org/0000-0002-4311-8645</orcidid><orcidid>https://orcid.org/0009-0006-4291-5016</orcidid></search><sort><creationdate>20190220</creationdate><title>Effects of soil process formalisms and forcing factors on simulated organic carbon depth-distributions in soils</title><author>Keyvanshokouhi, S. ; Cornu, S. ; Lafolie, F. ; Balesdent, J. ; Guenet, B. ; Moitrier, N. ; Nougier, C. ; Finke, P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c454t-712a9dd0b04ad31acd2cde372eff996483795df0877688d0c6c35e015e5c05843</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Agricultural sciences</topic><topic>Climate change</topic><topic>Earth Sciences</topic><topic>Environmental Sciences</topic><topic>Geochemistry</topic><topic>Global Changes</topic><topic>Life Sciences</topic><topic>Mineralogy</topic><topic>Model formalisms</topic><topic>OC projection</topic><topic>Organic matter</topic><topic>Pasture</topic><topic>Reduced tillage</topic><topic>Sciences of the Universe</topic><topic>Soil study</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Keyvanshokouhi, S.</creatorcontrib><creatorcontrib>Cornu, S.</creatorcontrib><creatorcontrib>Lafolie, F.</creatorcontrib><creatorcontrib>Balesdent, J.</creatorcontrib><creatorcontrib>Guenet, B.</creatorcontrib><creatorcontrib>Moitrier, N.</creatorcontrib><creatorcontrib>Nougier, C.</creatorcontrib><creatorcontrib>Finke, P.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>The Science of the total environment</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Keyvanshokouhi, S.</au><au>Cornu, S.</au><au>Lafolie, F.</au><au>Balesdent, J.</au><au>Guenet, B.</au><au>Moitrier, N.</au><au>Nougier, C.</au><au>Finke, P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effects of soil process formalisms and forcing factors on simulated organic carbon depth-distributions in soils</atitle><jtitle>The Science of the total environment</jtitle><addtitle>Sci Total Environ</addtitle><date>2019-02-20</date><risdate>2019</risdate><volume>652</volume><spage>523</spage><epage>537</epage><pages>523-537</pages><issn>0048-9697</issn><eissn>1879-1026</eissn><abstract>Soil organic carbon (OC) sequestration (i.e. the capture and long-term storage of atmospheric CO2) is being considered as a possible solution to mitigate climate change, notably through land use change (conversion of cropped land into pasture) and conservation agricultural practices (reduced tillage). Subsoil horizons (from 30 cm to 1 m) contribute to ca. half the total amount of soil OC, and the slow dynamics of deep OC as well as the relationships between the OC depth distribution and changes in land use and tillage practices still need to be modelled. We developed a fully modular, mechanistic OC depth distribution model, named OC-VGEN. This model includes OC dynamics, plant development, transfer of water, gas and heat, mixing by bioturbation and tillage as processes and climate and land use as boundary conditions. OC-VGEN allowed us to test the impact of 1) different numerical representations of root depth distribution, decomposition coefficients and bioturbation; 2) evolution of forcing factors such as land use, agricultural practices and climate on OC depth distribution at the century scale. We used the model to simulate decadal to century time scale experiments in Luvisols with different land uses (pasture and crop) and tillage practices (conventional and reduced) as well as projection scenarios of climate and land use at the horizon of 2100. We showed that, among the different tested formalisms/parametrizations: 1) the sensitivity of the simulated OC depth distribution to the tested numerical representations depended on the considered land use; 2) different numerical representations may accurately fit past soil OC evolution while leading to different OC stock predictions when tested for future forcing conditions (change of land use, tillage practice or climate). [Display omitted] •First OC stock modelling considering most soil processes and internal feedbacks•Testing of different formalisms existing in the literature for soil OC processes•Importance of root depth distribution in simulating OC depth distribution•Importance of bioturbation in simulating OC depth distribution•Importance of OC decomposition rate coefficients in simulating OC dynamics</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>30368182</pmid><doi>10.1016/j.scitotenv.2018.10.236</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-2433-5898</orcidid><orcidid>https://orcid.org/0009-0001-4561-6189</orcidid><orcidid>https://orcid.org/0000-0002-1084-1976</orcidid><orcidid>https://orcid.org/0000-0002-4947-5221</orcidid><orcidid>https://orcid.org/0000-0002-4311-8645</orcidid><orcidid>https://orcid.org/0009-0006-4291-5016</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0048-9697
ispartof The Science of the total environment, 2019-02, Vol.652, p.523-537
issn 0048-9697
1879-1026
language eng
recordid cdi_hal_primary_oai_HAL_hal_01904523v1
source Elsevier ScienceDirect Journals
subjects Agricultural sciences
Climate change
Earth Sciences
Environmental Sciences
Geochemistry
Global Changes
Life Sciences
Mineralogy
Model formalisms
OC projection
Organic matter
Pasture
Reduced tillage
Sciences of the Universe
Soil study
title Effects of soil process formalisms and forcing factors on simulated organic carbon depth-distributions in soils
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T14%3A20%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effects%20of%20soil%20process%20formalisms%20and%20forcing%20factors%20on%20simulated%20organic%20carbon%20depth-distributions%20in%20soils&rft.jtitle=The%20Science%20of%20the%20total%20environment&rft.au=Keyvanshokouhi,%20S.&rft.date=2019-02-20&rft.volume=652&rft.spage=523&rft.epage=537&rft.pages=523-537&rft.issn=0048-9697&rft.eissn=1879-1026&rft_id=info:doi/10.1016/j.scitotenv.2018.10.236&rft_dat=%3Celsevier_hal_p%3ES0048969718341329%3C/elsevier_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/30368182&rft_els_id=S0048969718341329&rfr_iscdi=true