Effects of soil process formalisms and forcing factors on simulated organic carbon depth-distributions in soils
Soil organic carbon (OC) sequestration (i.e. the capture and long-term storage of atmospheric CO2) is being considered as a possible solution to mitigate climate change, notably through land use change (conversion of cropped land into pasture) and conservation agricultural practices (reduced tillage...
Gespeichert in:
Veröffentlicht in: | The Science of the total environment 2019-02, Vol.652, p.523-537 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 537 |
---|---|
container_issue | |
container_start_page | 523 |
container_title | The Science of the total environment |
container_volume | 652 |
creator | Keyvanshokouhi, S. Cornu, S. Lafolie, F. Balesdent, J. Guenet, B. Moitrier, N. Nougier, C. Finke, P. |
description | Soil organic carbon (OC) sequestration (i.e. the capture and long-term storage of atmospheric CO2) is being considered as a possible solution to mitigate climate change, notably through land use change (conversion of cropped land into pasture) and conservation agricultural practices (reduced tillage). Subsoil horizons (from 30 cm to 1 m) contribute to ca. half the total amount of soil OC, and the slow dynamics of deep OC as well as the relationships between the OC depth distribution and changes in land use and tillage practices still need to be modelled.
We developed a fully modular, mechanistic OC depth distribution model, named OC-VGEN. This model includes OC dynamics, plant development, transfer of water, gas and heat, mixing by bioturbation and tillage as processes and climate and land use as boundary conditions. OC-VGEN allowed us to test the impact of 1) different numerical representations of root depth distribution, decomposition coefficients and bioturbation; 2) evolution of forcing factors such as land use, agricultural practices and climate on OC depth distribution at the century scale.
We used the model to simulate decadal to century time scale experiments in Luvisols with different land uses (pasture and crop) and tillage practices (conventional and reduced) as well as projection scenarios of climate and land use at the horizon of 2100. We showed that, among the different tested formalisms/parametrizations: 1) the sensitivity of the simulated OC depth distribution to the tested numerical representations depended on the considered land use; 2) different numerical representations may accurately fit past soil OC evolution while leading to different OC stock predictions when tested for future forcing conditions (change of land use, tillage practice or climate).
[Display omitted]
•First OC stock modelling considering most soil processes and internal feedbacks•Testing of different formalisms existing in the literature for soil OC processes•Importance of root depth distribution in simulating OC depth distribution•Importance of bioturbation in simulating OC depth distribution•Importance of OC decomposition rate coefficients in simulating OC dynamics |
doi_str_mv | 10.1016/j.scitotenv.2018.10.236 |
format | Article |
fullrecord | <record><control><sourceid>elsevier_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01904523v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0048969718341329</els_id><sourcerecordid>S0048969718341329</sourcerecordid><originalsourceid>FETCH-LOGICAL-c454t-712a9dd0b04ad31acd2cde372eff996483795df0877688d0c6c35e015e5c05843</originalsourceid><addsrcrecordid>eNqFkMtOwzAQRS0EoqXwC-Ati5RxnMTOskK8pEpsYG25frSukriy3Ur8PQ6FbpmNNTP33pEPQncE5gRI87CdR-WST2Y4zEsgPE_nJW3O0JRw1hYEyuYcTQEqXrRNyyboKsYt5GKcXKIJBdpwwssp8k_WGpUi9hZH7zq8C16ZGLH1oZedi33EctBjq9ywxlaq5EOWDzi6ft_JZDT2YS0Hp7CSYZUX2uzSptAupuBW--T8ELEbfuLjNbqwsovm5vedoc_np4_H12L5_vL2uFgWqqqrVDBSylZrWEElNSVS6VJpQ1lprG3bpuKUtbW2wBlrONegGkVrA6Q2tYKaV3SG7o-5G9mJXXC9DF_CSydeF0sxzoC0UNUlPZCsZUetCj7GYOzJQECMuMVWnHCLEfe4yLiz8_bo3O1XvdEn3x_fLFgcBSb_9eBMGIPMoIx2IWMX2rt_j3wDqImXbQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Effects of soil process formalisms and forcing factors on simulated organic carbon depth-distributions in soils</title><source>Elsevier ScienceDirect Journals</source><creator>Keyvanshokouhi, S. ; Cornu, S. ; Lafolie, F. ; Balesdent, J. ; Guenet, B. ; Moitrier, N. ; Nougier, C. ; Finke, P.</creator><creatorcontrib>Keyvanshokouhi, S. ; Cornu, S. ; Lafolie, F. ; Balesdent, J. ; Guenet, B. ; Moitrier, N. ; Nougier, C. ; Finke, P.</creatorcontrib><description>Soil organic carbon (OC) sequestration (i.e. the capture and long-term storage of atmospheric CO2) is being considered as a possible solution to mitigate climate change, notably through land use change (conversion of cropped land into pasture) and conservation agricultural practices (reduced tillage). Subsoil horizons (from 30 cm to 1 m) contribute to ca. half the total amount of soil OC, and the slow dynamics of deep OC as well as the relationships between the OC depth distribution and changes in land use and tillage practices still need to be modelled.
We developed a fully modular, mechanistic OC depth distribution model, named OC-VGEN. This model includes OC dynamics, plant development, transfer of water, gas and heat, mixing by bioturbation and tillage as processes and climate and land use as boundary conditions. OC-VGEN allowed us to test the impact of 1) different numerical representations of root depth distribution, decomposition coefficients and bioturbation; 2) evolution of forcing factors such as land use, agricultural practices and climate on OC depth distribution at the century scale.
We used the model to simulate decadal to century time scale experiments in Luvisols with different land uses (pasture and crop) and tillage practices (conventional and reduced) as well as projection scenarios of climate and land use at the horizon of 2100. We showed that, among the different tested formalisms/parametrizations: 1) the sensitivity of the simulated OC depth distribution to the tested numerical representations depended on the considered land use; 2) different numerical representations may accurately fit past soil OC evolution while leading to different OC stock predictions when tested for future forcing conditions (change of land use, tillage practice or climate).
[Display omitted]
•First OC stock modelling considering most soil processes and internal feedbacks•Testing of different formalisms existing in the literature for soil OC processes•Importance of root depth distribution in simulating OC depth distribution•Importance of bioturbation in simulating OC depth distribution•Importance of OC decomposition rate coefficients in simulating OC dynamics</description><identifier>ISSN: 0048-9697</identifier><identifier>EISSN: 1879-1026</identifier><identifier>DOI: 10.1016/j.scitotenv.2018.10.236</identifier><identifier>PMID: 30368182</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Agricultural sciences ; Climate change ; Earth Sciences ; Environmental Sciences ; Geochemistry ; Global Changes ; Life Sciences ; Mineralogy ; Model formalisms ; OC projection ; Organic matter ; Pasture ; Reduced tillage ; Sciences of the Universe ; Soil study</subject><ispartof>The Science of the total environment, 2019-02, Vol.652, p.523-537</ispartof><rights>2018 Elsevier B.V.</rights><rights>Copyright © 2018 Elsevier B.V. All rights reserved.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c454t-712a9dd0b04ad31acd2cde372eff996483795df0877688d0c6c35e015e5c05843</citedby><cites>FETCH-LOGICAL-c454t-712a9dd0b04ad31acd2cde372eff996483795df0877688d0c6c35e015e5c05843</cites><orcidid>0000-0002-2433-5898 ; 0009-0001-4561-6189 ; 0000-0002-1084-1976 ; 0000-0002-4947-5221 ; 0000-0002-4311-8645 ; 0009-0006-4291-5016</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0048969718341329$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3536,27903,27904,65309</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30368182$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-01904523$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Keyvanshokouhi, S.</creatorcontrib><creatorcontrib>Cornu, S.</creatorcontrib><creatorcontrib>Lafolie, F.</creatorcontrib><creatorcontrib>Balesdent, J.</creatorcontrib><creatorcontrib>Guenet, B.</creatorcontrib><creatorcontrib>Moitrier, N.</creatorcontrib><creatorcontrib>Nougier, C.</creatorcontrib><creatorcontrib>Finke, P.</creatorcontrib><title>Effects of soil process formalisms and forcing factors on simulated organic carbon depth-distributions in soils</title><title>The Science of the total environment</title><addtitle>Sci Total Environ</addtitle><description>Soil organic carbon (OC) sequestration (i.e. the capture and long-term storage of atmospheric CO2) is being considered as a possible solution to mitigate climate change, notably through land use change (conversion of cropped land into pasture) and conservation agricultural practices (reduced tillage). Subsoil horizons (from 30 cm to 1 m) contribute to ca. half the total amount of soil OC, and the slow dynamics of deep OC as well as the relationships between the OC depth distribution and changes in land use and tillage practices still need to be modelled.
We developed a fully modular, mechanistic OC depth distribution model, named OC-VGEN. This model includes OC dynamics, plant development, transfer of water, gas and heat, mixing by bioturbation and tillage as processes and climate and land use as boundary conditions. OC-VGEN allowed us to test the impact of 1) different numerical representations of root depth distribution, decomposition coefficients and bioturbation; 2) evolution of forcing factors such as land use, agricultural practices and climate on OC depth distribution at the century scale.
We used the model to simulate decadal to century time scale experiments in Luvisols with different land uses (pasture and crop) and tillage practices (conventional and reduced) as well as projection scenarios of climate and land use at the horizon of 2100. We showed that, among the different tested formalisms/parametrizations: 1) the sensitivity of the simulated OC depth distribution to the tested numerical representations depended on the considered land use; 2) different numerical representations may accurately fit past soil OC evolution while leading to different OC stock predictions when tested for future forcing conditions (change of land use, tillage practice or climate).
[Display omitted]
•First OC stock modelling considering most soil processes and internal feedbacks•Testing of different formalisms existing in the literature for soil OC processes•Importance of root depth distribution in simulating OC depth distribution•Importance of bioturbation in simulating OC depth distribution•Importance of OC decomposition rate coefficients in simulating OC dynamics</description><subject>Agricultural sciences</subject><subject>Climate change</subject><subject>Earth Sciences</subject><subject>Environmental Sciences</subject><subject>Geochemistry</subject><subject>Global Changes</subject><subject>Life Sciences</subject><subject>Mineralogy</subject><subject>Model formalisms</subject><subject>OC projection</subject><subject>Organic matter</subject><subject>Pasture</subject><subject>Reduced tillage</subject><subject>Sciences of the Universe</subject><subject>Soil study</subject><issn>0048-9697</issn><issn>1879-1026</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqFkMtOwzAQRS0EoqXwC-Ati5RxnMTOskK8pEpsYG25frSukriy3Ur8PQ6FbpmNNTP33pEPQncE5gRI87CdR-WST2Y4zEsgPE_nJW3O0JRw1hYEyuYcTQEqXrRNyyboKsYt5GKcXKIJBdpwwssp8k_WGpUi9hZH7zq8C16ZGLH1oZedi33EctBjq9ywxlaq5EOWDzi6ft_JZDT2YS0Hp7CSYZUX2uzSptAupuBW--T8ELEbfuLjNbqwsovm5vedoc_np4_H12L5_vL2uFgWqqqrVDBSylZrWEElNSVS6VJpQ1lprG3bpuKUtbW2wBlrONegGkVrA6Q2tYKaV3SG7o-5G9mJXXC9DF_CSydeF0sxzoC0UNUlPZCsZUetCj7GYOzJQECMuMVWnHCLEfe4yLiz8_bo3O1XvdEn3x_fLFgcBSb_9eBMGIPMoIx2IWMX2rt_j3wDqImXbQ</recordid><startdate>20190220</startdate><enddate>20190220</enddate><creator>Keyvanshokouhi, S.</creator><creator>Cornu, S.</creator><creator>Lafolie, F.</creator><creator>Balesdent, J.</creator><creator>Guenet, B.</creator><creator>Moitrier, N.</creator><creator>Nougier, C.</creator><creator>Finke, P.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-2433-5898</orcidid><orcidid>https://orcid.org/0009-0001-4561-6189</orcidid><orcidid>https://orcid.org/0000-0002-1084-1976</orcidid><orcidid>https://orcid.org/0000-0002-4947-5221</orcidid><orcidid>https://orcid.org/0000-0002-4311-8645</orcidid><orcidid>https://orcid.org/0009-0006-4291-5016</orcidid></search><sort><creationdate>20190220</creationdate><title>Effects of soil process formalisms and forcing factors on simulated organic carbon depth-distributions in soils</title><author>Keyvanshokouhi, S. ; Cornu, S. ; Lafolie, F. ; Balesdent, J. ; Guenet, B. ; Moitrier, N. ; Nougier, C. ; Finke, P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c454t-712a9dd0b04ad31acd2cde372eff996483795df0877688d0c6c35e015e5c05843</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Agricultural sciences</topic><topic>Climate change</topic><topic>Earth Sciences</topic><topic>Environmental Sciences</topic><topic>Geochemistry</topic><topic>Global Changes</topic><topic>Life Sciences</topic><topic>Mineralogy</topic><topic>Model formalisms</topic><topic>OC projection</topic><topic>Organic matter</topic><topic>Pasture</topic><topic>Reduced tillage</topic><topic>Sciences of the Universe</topic><topic>Soil study</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Keyvanshokouhi, S.</creatorcontrib><creatorcontrib>Cornu, S.</creatorcontrib><creatorcontrib>Lafolie, F.</creatorcontrib><creatorcontrib>Balesdent, J.</creatorcontrib><creatorcontrib>Guenet, B.</creatorcontrib><creatorcontrib>Moitrier, N.</creatorcontrib><creatorcontrib>Nougier, C.</creatorcontrib><creatorcontrib>Finke, P.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>The Science of the total environment</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Keyvanshokouhi, S.</au><au>Cornu, S.</au><au>Lafolie, F.</au><au>Balesdent, J.</au><au>Guenet, B.</au><au>Moitrier, N.</au><au>Nougier, C.</au><au>Finke, P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effects of soil process formalisms and forcing factors on simulated organic carbon depth-distributions in soils</atitle><jtitle>The Science of the total environment</jtitle><addtitle>Sci Total Environ</addtitle><date>2019-02-20</date><risdate>2019</risdate><volume>652</volume><spage>523</spage><epage>537</epage><pages>523-537</pages><issn>0048-9697</issn><eissn>1879-1026</eissn><abstract>Soil organic carbon (OC) sequestration (i.e. the capture and long-term storage of atmospheric CO2) is being considered as a possible solution to mitigate climate change, notably through land use change (conversion of cropped land into pasture) and conservation agricultural practices (reduced tillage). Subsoil horizons (from 30 cm to 1 m) contribute to ca. half the total amount of soil OC, and the slow dynamics of deep OC as well as the relationships between the OC depth distribution and changes in land use and tillage practices still need to be modelled.
We developed a fully modular, mechanistic OC depth distribution model, named OC-VGEN. This model includes OC dynamics, plant development, transfer of water, gas and heat, mixing by bioturbation and tillage as processes and climate and land use as boundary conditions. OC-VGEN allowed us to test the impact of 1) different numerical representations of root depth distribution, decomposition coefficients and bioturbation; 2) evolution of forcing factors such as land use, agricultural practices and climate on OC depth distribution at the century scale.
We used the model to simulate decadal to century time scale experiments in Luvisols with different land uses (pasture and crop) and tillage practices (conventional and reduced) as well as projection scenarios of climate and land use at the horizon of 2100. We showed that, among the different tested formalisms/parametrizations: 1) the sensitivity of the simulated OC depth distribution to the tested numerical representations depended on the considered land use; 2) different numerical representations may accurately fit past soil OC evolution while leading to different OC stock predictions when tested for future forcing conditions (change of land use, tillage practice or climate).
[Display omitted]
•First OC stock modelling considering most soil processes and internal feedbacks•Testing of different formalisms existing in the literature for soil OC processes•Importance of root depth distribution in simulating OC depth distribution•Importance of bioturbation in simulating OC depth distribution•Importance of OC decomposition rate coefficients in simulating OC dynamics</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>30368182</pmid><doi>10.1016/j.scitotenv.2018.10.236</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-2433-5898</orcidid><orcidid>https://orcid.org/0009-0001-4561-6189</orcidid><orcidid>https://orcid.org/0000-0002-1084-1976</orcidid><orcidid>https://orcid.org/0000-0002-4947-5221</orcidid><orcidid>https://orcid.org/0000-0002-4311-8645</orcidid><orcidid>https://orcid.org/0009-0006-4291-5016</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0048-9697 |
ispartof | The Science of the total environment, 2019-02, Vol.652, p.523-537 |
issn | 0048-9697 1879-1026 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_01904523v1 |
source | Elsevier ScienceDirect Journals |
subjects | Agricultural sciences Climate change Earth Sciences Environmental Sciences Geochemistry Global Changes Life Sciences Mineralogy Model formalisms OC projection Organic matter Pasture Reduced tillage Sciences of the Universe Soil study |
title | Effects of soil process formalisms and forcing factors on simulated organic carbon depth-distributions in soils |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T14%3A20%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effects%20of%20soil%20process%20formalisms%20and%20forcing%20factors%20on%20simulated%20organic%20carbon%20depth-distributions%20in%20soils&rft.jtitle=The%20Science%20of%20the%20total%20environment&rft.au=Keyvanshokouhi,%20S.&rft.date=2019-02-20&rft.volume=652&rft.spage=523&rft.epage=537&rft.pages=523-537&rft.issn=0048-9697&rft.eissn=1879-1026&rft_id=info:doi/10.1016/j.scitotenv.2018.10.236&rft_dat=%3Celsevier_hal_p%3ES0048969718341329%3C/elsevier_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/30368182&rft_els_id=S0048969718341329&rfr_iscdi=true |