Homogenization of immiscible compressible two-phase flow in double porosity media
A double porosity model of multidimensional immiscible com-pressible two-phase flow in fractured reservoirs is derived by the mathematicaltheory of homogenization. Special attention is paid to developing a generalapproach to incorporating compressibility of both phases. The model is writ-ten in term...
Gespeichert in:
Veröffentlicht in: | Electronic journal of differential equations 2016, Vol.52, p.1-28 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 28 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | Electronic journal of differential equations |
container_volume | 52 |
creator | Ait Mahiout, L. Amaziane, Brahim Mokrane, A. Pankratov, Leonid Latifa, Ait Mahiout, Brahim Amaziane, Abdelhafid Mokrane, Leonid |
description | A double porosity model of multidimensional immiscible com-pressible two-phase flow in fractured reservoirs is derived by the mathematicaltheory of homogenization. Special attention is paid to developing a generalapproach to incorporating compressibility of both phases. The model is writ-ten in terms of the phase formulation, i.e. the saturation of one phase andthe pressure of the second phase are primary unknowns. This formulationleads to a coupled system consisting of a doubly nonlinear degenerate para-bolic equation for the pressure and a doubly nonlinear degenerate parabolicdiffusion-convection equation for the saturation, subject to appropriate bound-ary and initial conditions. The major difficulties related to this model are inthe doubly nonlinear degenerate structure of the equations, as well as in thecoupling in the system. Furthermore, a new nonlinearity appears in the tem-poral term of the saturation equation. The aim of this paper is to extend theresults of [9] to this more general case. With the help of a new compactness re-sult and uniform a priori bounds for the modulus of continuity with respect tothe space and time variables, we provide a rigorous mathematical derivation ofthe upscaled model by means of the two-scale convergence and the dilatationtechnique. |
format | Article |
fullrecord | <record><control><sourceid>hal</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01902196v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_HAL_hal_01902196v1</sourcerecordid><originalsourceid>FETCH-hal_primary_oai_HAL_hal_01902196v13</originalsourceid><addsrcrecordid>eNqVjr0KwjAUhTMoWH_eIatDIaml0lFE6eAiuIfYpvZK0htyq6U-vVZ8AafD-c43nAmLpNgmcZblcsbmRHchZJ4macTOBTq8mRZeugNsOdYcnAMq4WoNL9H5YIi-pesx9o0mw2uLPYeWV_gYB48BCbqBO1OBXrJprS2Z1S8XbH08XPZF3GirfACnw6BQgyp2JzWyzxWRyDx7ys0_7hvLlEN1</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Homogenization of immiscible compressible two-phase flow in double porosity media</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Ait Mahiout, L. ; Amaziane, Brahim ; Mokrane, A. ; Pankratov, Leonid ; Latifa, Ait ; Mahiout, Brahim ; Amaziane, Abdelhafid ; Mokrane, Leonid</creator><creatorcontrib>Ait Mahiout, L. ; Amaziane, Brahim ; Mokrane, A. ; Pankratov, Leonid ; Latifa, Ait ; Mahiout, Brahim ; Amaziane, Abdelhafid ; Mokrane, Leonid</creatorcontrib><description>A double porosity model of multidimensional immiscible com-pressible two-phase flow in fractured reservoirs is derived by the mathematicaltheory of homogenization. Special attention is paid to developing a generalapproach to incorporating compressibility of both phases. The model is writ-ten in terms of the phase formulation, i.e. the saturation of one phase andthe pressure of the second phase are primary unknowns. This formulationleads to a coupled system consisting of a doubly nonlinear degenerate para-bolic equation for the pressure and a doubly nonlinear degenerate parabolicdiffusion-convection equation for the saturation, subject to appropriate bound-ary and initial conditions. The major difficulties related to this model are inthe doubly nonlinear degenerate structure of the equations, as well as in thecoupling in the system. Furthermore, a new nonlinearity appears in the tem-poral term of the saturation equation. The aim of this paper is to extend theresults of [9] to this more general case. With the help of a new compactness re-sult and uniform a priori bounds for the modulus of continuity with respect tothe space and time variables, we provide a rigorous mathematical derivation ofthe upscaled model by means of the two-scale convergence and the dilatationtechnique.</description><identifier>ISSN: 1072-6691</identifier><language>eng</language><publisher>Texas State University, Department of Mathematics</publisher><subject>Analysis of PDEs ; Classical Analysis and ODEs ; Computer Science ; Differential Geometry ; Discrete Mathematics ; Mathematics ; Numerical Analysis</subject><ispartof>Electronic journal of differential equations, 2016, Vol.52, p.1-28</ispartof><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0003-2941-9967 ; 0000-0003-2941-9967</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,4024</link.rule.ids><backlink>$$Uhttps://hal.science/hal-01902196$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Ait Mahiout, L.</creatorcontrib><creatorcontrib>Amaziane, Brahim</creatorcontrib><creatorcontrib>Mokrane, A.</creatorcontrib><creatorcontrib>Pankratov, Leonid</creatorcontrib><creatorcontrib>Latifa, Ait</creatorcontrib><creatorcontrib>Mahiout, Brahim</creatorcontrib><creatorcontrib>Amaziane, Abdelhafid</creatorcontrib><creatorcontrib>Mokrane, Leonid</creatorcontrib><title>Homogenization of immiscible compressible two-phase flow in double porosity media</title><title>Electronic journal of differential equations</title><description>A double porosity model of multidimensional immiscible com-pressible two-phase flow in fractured reservoirs is derived by the mathematicaltheory of homogenization. Special attention is paid to developing a generalapproach to incorporating compressibility of both phases. The model is writ-ten in terms of the phase formulation, i.e. the saturation of one phase andthe pressure of the second phase are primary unknowns. This formulationleads to a coupled system consisting of a doubly nonlinear degenerate para-bolic equation for the pressure and a doubly nonlinear degenerate parabolicdiffusion-convection equation for the saturation, subject to appropriate bound-ary and initial conditions. The major difficulties related to this model are inthe doubly nonlinear degenerate structure of the equations, as well as in thecoupling in the system. Furthermore, a new nonlinearity appears in the tem-poral term of the saturation equation. The aim of this paper is to extend theresults of [9] to this more general case. With the help of a new compactness re-sult and uniform a priori bounds for the modulus of continuity with respect tothe space and time variables, we provide a rigorous mathematical derivation ofthe upscaled model by means of the two-scale convergence and the dilatationtechnique.</description><subject>Analysis of PDEs</subject><subject>Classical Analysis and ODEs</subject><subject>Computer Science</subject><subject>Differential Geometry</subject><subject>Discrete Mathematics</subject><subject>Mathematics</subject><subject>Numerical Analysis</subject><issn>1072-6691</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqVjr0KwjAUhTMoWH_eIatDIaml0lFE6eAiuIfYpvZK0htyq6U-vVZ8AafD-c43nAmLpNgmcZblcsbmRHchZJ4macTOBTq8mRZeugNsOdYcnAMq4WoNL9H5YIi-pesx9o0mw2uLPYeWV_gYB48BCbqBO1OBXrJprS2Z1S8XbH08XPZF3GirfACnw6BQgyp2JzWyzxWRyDx7ys0_7hvLlEN1</recordid><startdate>2016</startdate><enddate>2016</enddate><creator>Ait Mahiout, L.</creator><creator>Amaziane, Brahim</creator><creator>Mokrane, A.</creator><creator>Pankratov, Leonid</creator><creator>Latifa, Ait</creator><creator>Mahiout, Brahim</creator><creator>Amaziane, Abdelhafid</creator><creator>Mokrane, Leonid</creator><general>Texas State University, Department of Mathematics</general><scope>1XC</scope><orcidid>https://orcid.org/0000-0003-2941-9967</orcidid><orcidid>https://orcid.org/0000-0003-2941-9967</orcidid></search><sort><creationdate>2016</creationdate><title>Homogenization of immiscible compressible two-phase flow in double porosity media</title><author>Ait Mahiout, L. ; Amaziane, Brahim ; Mokrane, A. ; Pankratov, Leonid ; Latifa, Ait ; Mahiout, Brahim ; Amaziane, Abdelhafid ; Mokrane, Leonid</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-hal_primary_oai_HAL_hal_01902196v13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Analysis of PDEs</topic><topic>Classical Analysis and ODEs</topic><topic>Computer Science</topic><topic>Differential Geometry</topic><topic>Discrete Mathematics</topic><topic>Mathematics</topic><topic>Numerical Analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ait Mahiout, L.</creatorcontrib><creatorcontrib>Amaziane, Brahim</creatorcontrib><creatorcontrib>Mokrane, A.</creatorcontrib><creatorcontrib>Pankratov, Leonid</creatorcontrib><creatorcontrib>Latifa, Ait</creatorcontrib><creatorcontrib>Mahiout, Brahim</creatorcontrib><creatorcontrib>Amaziane, Abdelhafid</creatorcontrib><creatorcontrib>Mokrane, Leonid</creatorcontrib><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Electronic journal of differential equations</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ait Mahiout, L.</au><au>Amaziane, Brahim</au><au>Mokrane, A.</au><au>Pankratov, Leonid</au><au>Latifa, Ait</au><au>Mahiout, Brahim</au><au>Amaziane, Abdelhafid</au><au>Mokrane, Leonid</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Homogenization of immiscible compressible two-phase flow in double porosity media</atitle><jtitle>Electronic journal of differential equations</jtitle><date>2016</date><risdate>2016</risdate><volume>52</volume><spage>1</spage><epage>28</epage><pages>1-28</pages><issn>1072-6691</issn><abstract>A double porosity model of multidimensional immiscible com-pressible two-phase flow in fractured reservoirs is derived by the mathematicaltheory of homogenization. Special attention is paid to developing a generalapproach to incorporating compressibility of both phases. The model is writ-ten in terms of the phase formulation, i.e. the saturation of one phase andthe pressure of the second phase are primary unknowns. This formulationleads to a coupled system consisting of a doubly nonlinear degenerate para-bolic equation for the pressure and a doubly nonlinear degenerate parabolicdiffusion-convection equation for the saturation, subject to appropriate bound-ary and initial conditions. The major difficulties related to this model are inthe doubly nonlinear degenerate structure of the equations, as well as in thecoupling in the system. Furthermore, a new nonlinearity appears in the tem-poral term of the saturation equation. The aim of this paper is to extend theresults of [9] to this more general case. With the help of a new compactness re-sult and uniform a priori bounds for the modulus of continuity with respect tothe space and time variables, we provide a rigorous mathematical derivation ofthe upscaled model by means of the two-scale convergence and the dilatationtechnique.</abstract><pub>Texas State University, Department of Mathematics</pub><orcidid>https://orcid.org/0000-0003-2941-9967</orcidid><orcidid>https://orcid.org/0000-0003-2941-9967</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1072-6691 |
ispartof | Electronic journal of differential equations, 2016, Vol.52, p.1-28 |
issn | 1072-6691 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_01902196v1 |
source | DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Analysis of PDEs Classical Analysis and ODEs Computer Science Differential Geometry Discrete Mathematics Mathematics Numerical Analysis |
title | Homogenization of immiscible compressible two-phase flow in double porosity media |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T16%3A35%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Homogenization%20of%20immiscible%20compressible%20two-phase%20flow%20in%20double%20porosity%20media&rft.jtitle=Electronic%20journal%20of%20differential%20equations&rft.au=Ait%20Mahiout,%20L.&rft.date=2016&rft.volume=52&rft.spage=1&rft.epage=28&rft.pages=1-28&rft.issn=1072-6691&rft_id=info:doi/&rft_dat=%3Chal%3Eoai_HAL_hal_01902196v1%3C/hal%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |