Calibration Procedures for Approximate Bayesian Credible Sets
We develop and apply two calibration procedures for checking the coverage of approximate Bayesian credible sets including intervals estimated using Monte Carlo methods. The user has an ideal prior and likelihood, but generates a credible set for an approximate posterior which is not proportional to...
Gespeichert in:
Veröffentlicht in: | Bayesian analysis 2019-12, Vol.14 (4) |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 4 |
container_start_page | |
container_title | Bayesian analysis |
container_volume | 14 |
creator | Lee, Jeong Eun Nicholls, Geoff K. Ryder, Robin J. |
description | We develop and apply two calibration procedures for checking the coverage of approximate Bayesian credible sets including intervals estimated using Monte Carlo methods. The user has an ideal prior and likelihood, but generates a credible set for an approximate posterior which is not proportional to the product of ideal likelihood and prior. We estimate the realised posterior coverage achieved by the approximate credible set. This is the coverage of the unknown "true" parameter if the data are a realisation of the user's ideal observation model conditioned on the parameter, and the parameter is a draw from the user's ideal prior. In one approach we estimate the posterior coverage at the data by making a semi-parametric logistic regression of binary coverage outcomes on simulated data against summary statistics evaluated on simulated data. In another we use Importance Sampling (IS) from the approximate posterior, windowing simulated data to fall close to the observed data. We give a Bayes Factor measuring the evidence for the realised posterior coverage to be below a user specified threshold. We illustrate our methods on four examples. |
doi_str_mv | 10.1214/19-BA1175 |
format | Article |
fullrecord | <record><control><sourceid>hal_cross</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01901650v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_HAL_hal_01901650v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c298t-aa497ff30863618100c023bbbcce0c12c26aee931b62774e0e2f3e9686c9adb3</originalsourceid><addsrcrecordid>eNpFUMFKxDAUDKLgunrwD3r1EH0vaZPm4KFb1BUKCu49JOkrVup2Saq4f--uK3qaYZgZhmHsEuEaBeY3aPiiQtTFEZuhkciVMnD8wxUHo4tTdpbSG0BRaNQzdlu7offRTf24zp7jGKj9iJSyboxZtdnE8at_dxNlC7el1Lt1Vkdqez9Q9kJTOmcnnRsSXfzinK3u71b1kjdPD4911fAgTDlx53Kju05CqaTCEgECCOm9D4EgoAhCOaLdWq-E1jkBiU6SUaUKxrVeztnVofbVDXYTd4vi1o6ut8uqsXsN0ACqAj7x3xvimFKk7i-AYPcXWTT2cJH8Bu-cV6E</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Calibration Procedures for Approximate Bayesian Credible Sets</title><source>DOAJ Directory of Open Access Journals</source><source>Project Euclid Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Lee, Jeong Eun ; Nicholls, Geoff K. ; Ryder, Robin J.</creator><creatorcontrib>Lee, Jeong Eun ; Nicholls, Geoff K. ; Ryder, Robin J.</creatorcontrib><description>We develop and apply two calibration procedures for checking the coverage of approximate Bayesian credible sets including intervals estimated using Monte Carlo methods. The user has an ideal prior and likelihood, but generates a credible set for an approximate posterior which is not proportional to the product of ideal likelihood and prior. We estimate the realised posterior coverage achieved by the approximate credible set. This is the coverage of the unknown "true" parameter if the data are a realisation of the user's ideal observation model conditioned on the parameter, and the parameter is a draw from the user's ideal prior. In one approach we estimate the posterior coverage at the data by making a semi-parametric logistic regression of binary coverage outcomes on simulated data against summary statistics evaluated on simulated data. In another we use Importance Sampling (IS) from the approximate posterior, windowing simulated data to fall close to the observed data. We give a Bayes Factor measuring the evidence for the realised posterior coverage to be below a user specified threshold. We illustrate our methods on four examples.</description><identifier>ISSN: 1936-0975</identifier><identifier>EISSN: 1931-6690</identifier><identifier>DOI: 10.1214/19-BA1175</identifier><language>eng</language><publisher>International Society for Bayesian Analysis</publisher><subject>Mathematics ; Methodology ; Statistics</subject><ispartof>Bayesian analysis, 2019-12, Vol.14 (4)</ispartof><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c298t-aa497ff30863618100c023bbbcce0c12c26aee931b62774e0e2f3e9686c9adb3</citedby><cites>FETCH-LOGICAL-c298t-aa497ff30863618100c023bbbcce0c12c26aee931b62774e0e2f3e9686c9adb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,864,885,27924,27925</link.rule.ids><backlink>$$Uhttps://hal.science/hal-01901650$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Lee, Jeong Eun</creatorcontrib><creatorcontrib>Nicholls, Geoff K.</creatorcontrib><creatorcontrib>Ryder, Robin J.</creatorcontrib><title>Calibration Procedures for Approximate Bayesian Credible Sets</title><title>Bayesian analysis</title><description>We develop and apply two calibration procedures for checking the coverage of approximate Bayesian credible sets including intervals estimated using Monte Carlo methods. The user has an ideal prior and likelihood, but generates a credible set for an approximate posterior which is not proportional to the product of ideal likelihood and prior. We estimate the realised posterior coverage achieved by the approximate credible set. This is the coverage of the unknown "true" parameter if the data are a realisation of the user's ideal observation model conditioned on the parameter, and the parameter is a draw from the user's ideal prior. In one approach we estimate the posterior coverage at the data by making a semi-parametric logistic regression of binary coverage outcomes on simulated data against summary statistics evaluated on simulated data. In another we use Importance Sampling (IS) from the approximate posterior, windowing simulated data to fall close to the observed data. We give a Bayes Factor measuring the evidence for the realised posterior coverage to be below a user specified threshold. We illustrate our methods on four examples.</description><subject>Mathematics</subject><subject>Methodology</subject><subject>Statistics</subject><issn>1936-0975</issn><issn>1931-6690</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNpFUMFKxDAUDKLgunrwD3r1EH0vaZPm4KFb1BUKCu49JOkrVup2Saq4f--uK3qaYZgZhmHsEuEaBeY3aPiiQtTFEZuhkciVMnD8wxUHo4tTdpbSG0BRaNQzdlu7offRTf24zp7jGKj9iJSyboxZtdnE8at_dxNlC7el1Lt1Vkdqez9Q9kJTOmcnnRsSXfzinK3u71b1kjdPD4911fAgTDlx53Kju05CqaTCEgECCOm9D4EgoAhCOaLdWq-E1jkBiU6SUaUKxrVeztnVofbVDXYTd4vi1o6ut8uqsXsN0ACqAj7x3xvimFKk7i-AYPcXWTT2cJH8Bu-cV6E</recordid><startdate>20191201</startdate><enddate>20191201</enddate><creator>Lee, Jeong Eun</creator><creator>Nicholls, Geoff K.</creator><creator>Ryder, Robin J.</creator><general>International Society for Bayesian Analysis</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope></search><sort><creationdate>20191201</creationdate><title>Calibration Procedures for Approximate Bayesian Credible Sets</title><author>Lee, Jeong Eun ; Nicholls, Geoff K. ; Ryder, Robin J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c298t-aa497ff30863618100c023bbbcce0c12c26aee931b62774e0e2f3e9686c9adb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Mathematics</topic><topic>Methodology</topic><topic>Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, Jeong Eun</creatorcontrib><creatorcontrib>Nicholls, Geoff K.</creatorcontrib><creatorcontrib>Ryder, Robin J.</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Bayesian analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee, Jeong Eun</au><au>Nicholls, Geoff K.</au><au>Ryder, Robin J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Calibration Procedures for Approximate Bayesian Credible Sets</atitle><jtitle>Bayesian analysis</jtitle><date>2019-12-01</date><risdate>2019</risdate><volume>14</volume><issue>4</issue><issn>1936-0975</issn><eissn>1931-6690</eissn><abstract>We develop and apply two calibration procedures for checking the coverage of approximate Bayesian credible sets including intervals estimated using Monte Carlo methods. The user has an ideal prior and likelihood, but generates a credible set for an approximate posterior which is not proportional to the product of ideal likelihood and prior. We estimate the realised posterior coverage achieved by the approximate credible set. This is the coverage of the unknown "true" parameter if the data are a realisation of the user's ideal observation model conditioned on the parameter, and the parameter is a draw from the user's ideal prior. In one approach we estimate the posterior coverage at the data by making a semi-parametric logistic regression of binary coverage outcomes on simulated data against summary statistics evaluated on simulated data. In another we use Importance Sampling (IS) from the approximate posterior, windowing simulated data to fall close to the observed data. We give a Bayes Factor measuring the evidence for the realised posterior coverage to be below a user specified threshold. We illustrate our methods on four examples.</abstract><pub>International Society for Bayesian Analysis</pub><doi>10.1214/19-BA1175</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1936-0975 |
ispartof | Bayesian analysis, 2019-12, Vol.14 (4) |
issn | 1936-0975 1931-6690 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_01901650v1 |
source | DOAJ Directory of Open Access Journals; Project Euclid Open Access; EZB-FREE-00999 freely available EZB journals |
subjects | Mathematics Methodology Statistics |
title | Calibration Procedures for Approximate Bayesian Credible Sets |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T17%3A37%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Calibration%20Procedures%20for%20Approximate%20Bayesian%20Credible%20Sets&rft.jtitle=Bayesian%20analysis&rft.au=Lee,%20Jeong%20Eun&rft.date=2019-12-01&rft.volume=14&rft.issue=4&rft.issn=1936-0975&rft.eissn=1931-6690&rft_id=info:doi/10.1214/19-BA1175&rft_dat=%3Chal_cross%3Eoai_HAL_hal_01901650v1%3C/hal_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |