Order Out of Chaos: Slowly Reversing Mean Flows Emerge from Turbulently Generated Internal Waves

We demonstrate via direct numerical simulations that a periodic, oscillating mean flow spontaneously develops from turbulently generated internal waves. We consider a minimal physical model where the fluid self-organizes in a convective layer adjacent to a stably stratified one. Internal waves are e...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review letters 2018-06, Vol.120 (24), p.244505-244505, Article 244505
Hauptverfasser: Couston, Louis-Alexandre, Lecoanet, Daniel, Favier, Benjamin, Le Bars, Michael
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 244505
container_issue 24
container_start_page 244505
container_title Physical review letters
container_volume 120
creator Couston, Louis-Alexandre
Lecoanet, Daniel
Favier, Benjamin
Le Bars, Michael
description We demonstrate via direct numerical simulations that a periodic, oscillating mean flow spontaneously develops from turbulently generated internal waves. We consider a minimal physical model where the fluid self-organizes in a convective layer adjacent to a stably stratified one. Internal waves are excited by turbulent convective motions, then nonlinearly interact to produce a mean flow reversing on timescales much longer than the waves' period. Our results demonstrate for the first time that the three-scale dynamics due to convection, waves, and mean flow is generic and hence can occur in many astrophysical and geophysical fluids. We discuss efforts to reproduce the mean flow in reduced models, where the turbulence is bypassed. We demonstrate that wave intermittency, resulting from the chaotic nature of convection, plays a key role in the mean-flow dynamics, which thus cannot be captured using only second-order statistics of the turbulent motions.
doi_str_mv 10.1103/PhysRevLett.120.244505
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01901223v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2062832921</sourcerecordid><originalsourceid>FETCH-LOGICAL-c421t-5a78ca74c1fb32f4dcb97eaa624d42fe12f2a1cf4b4785e264f2f7bcfcd3fec43</originalsourceid><addsrcrecordid>eNpdkU1vEzEQhi0EoqHwFypLXOCwwTP2rrPcqqhfUlAQFHE0Xu-4SbW7bu3doPx7HKVUiNNIo-d9NaOHsTMQcwAhP33d7NM32q1oHOeAYo5KlaJ8wWYgdF1oAPWSzYSQUNRC6BP2JqV7IQRgtXjNTrCuSy1AztivdWwp8vU08uD5cmND-sy_d-F3t-e5n2LaDnf8C9mBX-Zt4hc9xTviPoae306xmToaxgxf0UDRjtTym2GkONiO_7Q7Sm_ZK2-7RO-e5in7cXlxu7wuVuurm-X5qnAKYSxKqxfOauXANxK9al1Ta7K2QtUq9ATo0YLzqlF6URJWyqPXjfOulZ6ckqfs47F3YzvzELe9jXsT7NZcn6_MYSegzu-j3EFmPxzZhxgeJ0qj6bfJUdfZgcKUDIoKFxJrPKDv_0Pvw3T4LlOAWiHqUmeqOlIuhpQi-ecLQJiDL_OPL5N9maOvHDx7qp-antrn2F9B8g_seZPI</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2127422757</pqid></control><display><type>article</type><title>Order Out of Chaos: Slowly Reversing Mean Flows Emerge from Turbulently Generated Internal Waves</title><source>American Physical Society Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Couston, Louis-Alexandre ; Lecoanet, Daniel ; Favier, Benjamin ; Le Bars, Michael</creator><creatorcontrib>Couston, Louis-Alexandre ; Lecoanet, Daniel ; Favier, Benjamin ; Le Bars, Michael</creatorcontrib><description>We demonstrate via direct numerical simulations that a periodic, oscillating mean flow spontaneously develops from turbulently generated internal waves. We consider a minimal physical model where the fluid self-organizes in a convective layer adjacent to a stably stratified one. Internal waves are excited by turbulent convective motions, then nonlinearly interact to produce a mean flow reversing on timescales much longer than the waves' period. Our results demonstrate for the first time that the three-scale dynamics due to convection, waves, and mean flow is generic and hence can occur in many astrophysical and geophysical fluids. We discuss efforts to reproduce the mean flow in reduced models, where the turbulence is bypassed. We demonstrate that wave intermittency, resulting from the chaotic nature of convection, plays a key role in the mean-flow dynamics, which thus cannot be captured using only second-order statistics of the turbulent motions.</description><identifier>ISSN: 0031-9007</identifier><identifier>EISSN: 1079-7114</identifier><identifier>DOI: 10.1103/PhysRevLett.120.244505</identifier><identifier>PMID: 29957013</identifier><language>eng</language><publisher>United States: American Physical Society</publisher><subject>Computational fluid dynamics ; Computer simulation ; Convection ; Fluid flow ; Fluid mechanics ; Geophysical fluids ; Geophysics ; Internal waves ; Mathematical models ; Mechanics ; Physics ; Reversed flow ; Turbulence</subject><ispartof>Physical review letters, 2018-06, Vol.120 (24), p.244505-244505, Article 244505</ispartof><rights>Copyright American Physical Society Jun 15, 2018</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c421t-5a78ca74c1fb32f4dcb97eaa624d42fe12f2a1cf4b4785e264f2f7bcfcd3fec43</citedby><cites>FETCH-LOGICAL-c421t-5a78ca74c1fb32f4dcb97eaa624d42fe12f2a1cf4b4785e264f2f7bcfcd3fec43</cites><orcidid>0000-0002-7635-9728 ; 0000-0002-4884-6190</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,2863,2864,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29957013$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-01901223$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Couston, Louis-Alexandre</creatorcontrib><creatorcontrib>Lecoanet, Daniel</creatorcontrib><creatorcontrib>Favier, Benjamin</creatorcontrib><creatorcontrib>Le Bars, Michael</creatorcontrib><title>Order Out of Chaos: Slowly Reversing Mean Flows Emerge from Turbulently Generated Internal Waves</title><title>Physical review letters</title><addtitle>Phys Rev Lett</addtitle><description>We demonstrate via direct numerical simulations that a periodic, oscillating mean flow spontaneously develops from turbulently generated internal waves. We consider a minimal physical model where the fluid self-organizes in a convective layer adjacent to a stably stratified one. Internal waves are excited by turbulent convective motions, then nonlinearly interact to produce a mean flow reversing on timescales much longer than the waves' period. Our results demonstrate for the first time that the three-scale dynamics due to convection, waves, and mean flow is generic and hence can occur in many astrophysical and geophysical fluids. We discuss efforts to reproduce the mean flow in reduced models, where the turbulence is bypassed. We demonstrate that wave intermittency, resulting from the chaotic nature of convection, plays a key role in the mean-flow dynamics, which thus cannot be captured using only second-order statistics of the turbulent motions.</description><subject>Computational fluid dynamics</subject><subject>Computer simulation</subject><subject>Convection</subject><subject>Fluid flow</subject><subject>Fluid mechanics</subject><subject>Geophysical fluids</subject><subject>Geophysics</subject><subject>Internal waves</subject><subject>Mathematical models</subject><subject>Mechanics</subject><subject>Physics</subject><subject>Reversed flow</subject><subject>Turbulence</subject><issn>0031-9007</issn><issn>1079-7114</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNpdkU1vEzEQhi0EoqHwFypLXOCwwTP2rrPcqqhfUlAQFHE0Xu-4SbW7bu3doPx7HKVUiNNIo-d9NaOHsTMQcwAhP33d7NM32q1oHOeAYo5KlaJ8wWYgdF1oAPWSzYSQUNRC6BP2JqV7IQRgtXjNTrCuSy1AztivdWwp8vU08uD5cmND-sy_d-F3t-e5n2LaDnf8C9mBX-Zt4hc9xTviPoae306xmToaxgxf0UDRjtTym2GkONiO_7Q7Sm_ZK2-7RO-e5in7cXlxu7wuVuurm-X5qnAKYSxKqxfOauXANxK9al1Ta7K2QtUq9ATo0YLzqlF6URJWyqPXjfOulZ6ckqfs47F3YzvzELe9jXsT7NZcn6_MYSegzu-j3EFmPxzZhxgeJ0qj6bfJUdfZgcKUDIoKFxJrPKDv_0Pvw3T4LlOAWiHqUmeqOlIuhpQi-ecLQJiDL_OPL5N9maOvHDx7qp-antrn2F9B8g_seZPI</recordid><startdate>20180615</startdate><enddate>20180615</enddate><creator>Couston, Louis-Alexandre</creator><creator>Lecoanet, Daniel</creator><creator>Favier, Benjamin</creator><creator>Le Bars, Michael</creator><general>American Physical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-7635-9728</orcidid><orcidid>https://orcid.org/0000-0002-4884-6190</orcidid></search><sort><creationdate>20180615</creationdate><title>Order Out of Chaos: Slowly Reversing Mean Flows Emerge from Turbulently Generated Internal Waves</title><author>Couston, Louis-Alexandre ; Lecoanet, Daniel ; Favier, Benjamin ; Le Bars, Michael</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c421t-5a78ca74c1fb32f4dcb97eaa624d42fe12f2a1cf4b4785e264f2f7bcfcd3fec43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Computational fluid dynamics</topic><topic>Computer simulation</topic><topic>Convection</topic><topic>Fluid flow</topic><topic>Fluid mechanics</topic><topic>Geophysical fluids</topic><topic>Geophysics</topic><topic>Internal waves</topic><topic>Mathematical models</topic><topic>Mechanics</topic><topic>Physics</topic><topic>Reversed flow</topic><topic>Turbulence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Couston, Louis-Alexandre</creatorcontrib><creatorcontrib>Lecoanet, Daniel</creatorcontrib><creatorcontrib>Favier, Benjamin</creatorcontrib><creatorcontrib>Le Bars, Michael</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Physical review letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Couston, Louis-Alexandre</au><au>Lecoanet, Daniel</au><au>Favier, Benjamin</au><au>Le Bars, Michael</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Order Out of Chaos: Slowly Reversing Mean Flows Emerge from Turbulently Generated Internal Waves</atitle><jtitle>Physical review letters</jtitle><addtitle>Phys Rev Lett</addtitle><date>2018-06-15</date><risdate>2018</risdate><volume>120</volume><issue>24</issue><spage>244505</spage><epage>244505</epage><pages>244505-244505</pages><artnum>244505</artnum><issn>0031-9007</issn><eissn>1079-7114</eissn><abstract>We demonstrate via direct numerical simulations that a periodic, oscillating mean flow spontaneously develops from turbulently generated internal waves. We consider a minimal physical model where the fluid self-organizes in a convective layer adjacent to a stably stratified one. Internal waves are excited by turbulent convective motions, then nonlinearly interact to produce a mean flow reversing on timescales much longer than the waves' period. Our results demonstrate for the first time that the three-scale dynamics due to convection, waves, and mean flow is generic and hence can occur in many astrophysical and geophysical fluids. We discuss efforts to reproduce the mean flow in reduced models, where the turbulence is bypassed. We demonstrate that wave intermittency, resulting from the chaotic nature of convection, plays a key role in the mean-flow dynamics, which thus cannot be captured using only second-order statistics of the turbulent motions.</abstract><cop>United States</cop><pub>American Physical Society</pub><pmid>29957013</pmid><doi>10.1103/PhysRevLett.120.244505</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-7635-9728</orcidid><orcidid>https://orcid.org/0000-0002-4884-6190</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0031-9007
ispartof Physical review letters, 2018-06, Vol.120 (24), p.244505-244505, Article 244505
issn 0031-9007
1079-7114
language eng
recordid cdi_hal_primary_oai_HAL_hal_01901223v1
source American Physical Society Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Computational fluid dynamics
Computer simulation
Convection
Fluid flow
Fluid mechanics
Geophysical fluids
Geophysics
Internal waves
Mathematical models
Mechanics
Physics
Reversed flow
Turbulence
title Order Out of Chaos: Slowly Reversing Mean Flows Emerge from Turbulently Generated Internal Waves
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T07%3A05%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Order%20Out%20of%20Chaos:%20Slowly%20Reversing%20Mean%20Flows%20Emerge%20from%20Turbulently%20Generated%20Internal%20Waves&rft.jtitle=Physical%20review%20letters&rft.au=Couston,%20Louis-Alexandre&rft.date=2018-06-15&rft.volume=120&rft.issue=24&rft.spage=244505&rft.epage=244505&rft.pages=244505-244505&rft.artnum=244505&rft.issn=0031-9007&rft.eissn=1079-7114&rft_id=info:doi/10.1103/PhysRevLett.120.244505&rft_dat=%3Cproquest_hal_p%3E2062832921%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2127422757&rft_id=info:pmid/29957013&rfr_iscdi=true