Breakup behavior of nanolayers in polymeric multilayer systems — Creation of nanosheets and nanodroplets
Multilayer films comprising polystyrene (PS)/polymethyl methalcrylate (PMMA) and PS/polycaprolatone (PCL) alternating nanolayers with varied layer thickness were fabricated by multilayer coextrusion. The nanolayers breakup phenomena of PMMA and PCL were characterized using atomic force microscopy (A...
Gespeichert in:
Veröffentlicht in: | Polymer (Guilford) 2018-05, Vol.143, p.19-27 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 27 |
---|---|
container_issue | |
container_start_page | 19 |
container_title | Polymer (Guilford) |
container_volume | 143 |
creator | Feng, Jingxing Zhang, Ziyou Bironeau, Adrien Guinault, Alain Miquelard-Garnier, Guillaume Sollogoub, Cyrille Olah, Andrew Baer, Eric |
description | Multilayer films comprising polystyrene (PS)/polymethyl methalcrylate (PMMA) and PS/polycaprolatone (PCL) alternating nanolayers with varied layer thickness were fabricated by multilayer coextrusion. The nanolayers breakup phenomena of PMMA and PCL were characterized using atomic force microscopy (AFM), oxygen permeability, light transmission, wide-angle X-ray scattering (WAXS), and differential scanning calorimetry (DSC). The continuous layers started to break up into nanosheets and nanodroplets during the coextrusion process when the nominal layer thickness decreased to between 30 nm and 40 nm. Further decrease of the nominal layer thickness of PMMA and PCL resulted in less nanosheets and more nanodroplets. Oxygen permeability was effective for characterizing the onset thickness of layer breakup. The oxygen permeability for the PS/PCL system was modeled and demonstrated good correlation with estimated composition of continuous layers, nanosheets, and nanodroplets.
[Display omitted]
•Breakup behavior of the nanolayers during multilayer coextrusion is studied.•Continuous layers break up into nanosheets and nanodroplets when the nominal layer thickness is decreased to 30 nm.•Oxygen permeability is effective in characterizing the onset thickness of layer breakup. |
doi_str_mv | 10.1016/j.polymer.2018.03.049 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01900655v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0032386118302581</els_id><sourcerecordid>2068488105</sourcerecordid><originalsourceid>FETCH-LOGICAL-c455t-e8cda1589ba553053f06cd245e6ec8f2af833f876df80ea6adcdcbcad997b323</originalsourceid><addsrcrecordid>eNqFkU1u2zAQhYmiAeo6OUIBAl11IWVIijK1KhIjPwUMZJM9QZMjmKosqqRswLscoifsSULHTrZdDWbmvQ9DPkK-MSgZsPq6K8fQH7YYSw5MlSBKqJpPZMbUQhScN-wzmQEIXghVsy_ka0odAHDJqxnpbiOa37uRrnFj9j5EGlo6mCH05oAxUT_QM9xbut31k39b0HRIE24T_ffyly4zYvJheLemDeKUqBncW-tiGPs8uCQXrekTXp3rnDzf3z0vH4vV08Ov5c2qsJWUU4HKOsOkatZGSgFStFBbxyuJNVrVctMqIVq1qF2rAE1tnHV2bY1rmsVacDEnP07Yjen1GP3WxIMOxuvHm5U-zoA1ALWUe5a130_aMYY_O0yT7sIuDvk6zaFWlVIsHzAn8qSyMaQUsf3AMtDHBHSnz5-kjwloEDonkH0_Tz7Mr937vE3W42DR-Yh20i74_xBeAbnslVI</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2068488105</pqid></control><display><type>article</type><title>Breakup behavior of nanolayers in polymeric multilayer systems — Creation of nanosheets and nanodroplets</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Feng, Jingxing ; Zhang, Ziyou ; Bironeau, Adrien ; Guinault, Alain ; Miquelard-Garnier, Guillaume ; Sollogoub, Cyrille ; Olah, Andrew ; Baer, Eric</creator><creatorcontrib>Feng, Jingxing ; Zhang, Ziyou ; Bironeau, Adrien ; Guinault, Alain ; Miquelard-Garnier, Guillaume ; Sollogoub, Cyrille ; Olah, Andrew ; Baer, Eric</creatorcontrib><description>Multilayer films comprising polystyrene (PS)/polymethyl methalcrylate (PMMA) and PS/polycaprolatone (PCL) alternating nanolayers with varied layer thickness were fabricated by multilayer coextrusion. The nanolayers breakup phenomena of PMMA and PCL were characterized using atomic force microscopy (AFM), oxygen permeability, light transmission, wide-angle X-ray scattering (WAXS), and differential scanning calorimetry (DSC). The continuous layers started to break up into nanosheets and nanodroplets during the coextrusion process when the nominal layer thickness decreased to between 30 nm and 40 nm. Further decrease of the nominal layer thickness of PMMA and PCL resulted in less nanosheets and more nanodroplets. Oxygen permeability was effective for characterizing the onset thickness of layer breakup. The oxygen permeability for the PS/PCL system was modeled and demonstrated good correlation with estimated composition of continuous layers, nanosheets, and nanodroplets.
[Display omitted]
•Breakup behavior of the nanolayers during multilayer coextrusion is studied.•Continuous layers break up into nanosheets and nanodroplets when the nominal layer thickness is decreased to 30 nm.•Oxygen permeability is effective in characterizing the onset thickness of layer breakup.</description><identifier>ISSN: 0032-3861</identifier><identifier>EISSN: 1873-2291</identifier><identifier>DOI: 10.1016/j.polymer.2018.03.049</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Atomic force microscopy ; Breakup ; Calorimetry ; Coextrusion ; Differential scanning calorimetry ; Engineering Sciences ; Layer breakup ; Light transmission ; Microscopy ; Multilayer coextrusion ; Multilayers ; Nanosheets ; Oxygen ; Permeability ; Polycarbonate resins ; Polymer nanodroplets ; Polymethyl methacrylate ; Polymethylmethacrylate ; Polystyrene ; Polystyrene resins ; Thickness ; X-ray scattering</subject><ispartof>Polymer (Guilford), 2018-05, Vol.143, p.19-27</ispartof><rights>2018 Elsevier Ltd</rights><rights>Copyright Elsevier BV May 9, 2018</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c455t-e8cda1589ba553053f06cd245e6ec8f2af833f876df80ea6adcdcbcad997b323</citedby><cites>FETCH-LOGICAL-c455t-e8cda1589ba553053f06cd245e6ec8f2af833f876df80ea6adcdcbcad997b323</cites><orcidid>0000-0002-3191-7431 ; 0000-0003-2204-3696 ; 0000-0002-0251-8941 ; 0000-0002-9087-0370</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.polymer.2018.03.049$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://hal.science/hal-01900655$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Feng, Jingxing</creatorcontrib><creatorcontrib>Zhang, Ziyou</creatorcontrib><creatorcontrib>Bironeau, Adrien</creatorcontrib><creatorcontrib>Guinault, Alain</creatorcontrib><creatorcontrib>Miquelard-Garnier, Guillaume</creatorcontrib><creatorcontrib>Sollogoub, Cyrille</creatorcontrib><creatorcontrib>Olah, Andrew</creatorcontrib><creatorcontrib>Baer, Eric</creatorcontrib><title>Breakup behavior of nanolayers in polymeric multilayer systems — Creation of nanosheets and nanodroplets</title><title>Polymer (Guilford)</title><description>Multilayer films comprising polystyrene (PS)/polymethyl methalcrylate (PMMA) and PS/polycaprolatone (PCL) alternating nanolayers with varied layer thickness were fabricated by multilayer coextrusion. The nanolayers breakup phenomena of PMMA and PCL were characterized using atomic force microscopy (AFM), oxygen permeability, light transmission, wide-angle X-ray scattering (WAXS), and differential scanning calorimetry (DSC). The continuous layers started to break up into nanosheets and nanodroplets during the coextrusion process when the nominal layer thickness decreased to between 30 nm and 40 nm. Further decrease of the nominal layer thickness of PMMA and PCL resulted in less nanosheets and more nanodroplets. Oxygen permeability was effective for characterizing the onset thickness of layer breakup. The oxygen permeability for the PS/PCL system was modeled and demonstrated good correlation with estimated composition of continuous layers, nanosheets, and nanodroplets.
[Display omitted]
•Breakup behavior of the nanolayers during multilayer coextrusion is studied.•Continuous layers break up into nanosheets and nanodroplets when the nominal layer thickness is decreased to 30 nm.•Oxygen permeability is effective in characterizing the onset thickness of layer breakup.</description><subject>Atomic force microscopy</subject><subject>Breakup</subject><subject>Calorimetry</subject><subject>Coextrusion</subject><subject>Differential scanning calorimetry</subject><subject>Engineering Sciences</subject><subject>Layer breakup</subject><subject>Light transmission</subject><subject>Microscopy</subject><subject>Multilayer coextrusion</subject><subject>Multilayers</subject><subject>Nanosheets</subject><subject>Oxygen</subject><subject>Permeability</subject><subject>Polycarbonate resins</subject><subject>Polymer nanodroplets</subject><subject>Polymethyl methacrylate</subject><subject>Polymethylmethacrylate</subject><subject>Polystyrene</subject><subject>Polystyrene resins</subject><subject>Thickness</subject><subject>X-ray scattering</subject><issn>0032-3861</issn><issn>1873-2291</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqFkU1u2zAQhYmiAeo6OUIBAl11IWVIijK1KhIjPwUMZJM9QZMjmKosqqRswLscoifsSULHTrZdDWbmvQ9DPkK-MSgZsPq6K8fQH7YYSw5MlSBKqJpPZMbUQhScN-wzmQEIXghVsy_ka0odAHDJqxnpbiOa37uRrnFj9j5EGlo6mCH05oAxUT_QM9xbut31k39b0HRIE24T_ffyly4zYvJheLemDeKUqBncW-tiGPs8uCQXrekTXp3rnDzf3z0vH4vV08Ov5c2qsJWUU4HKOsOkatZGSgFStFBbxyuJNVrVctMqIVq1qF2rAE1tnHV2bY1rmsVacDEnP07Yjen1GP3WxIMOxuvHm5U-zoA1ALWUe5a130_aMYY_O0yT7sIuDvk6zaFWlVIsHzAn8qSyMaQUsf3AMtDHBHSnz5-kjwloEDonkH0_Tz7Mr937vE3W42DR-Yh20i74_xBeAbnslVI</recordid><startdate>20180509</startdate><enddate>20180509</enddate><creator>Feng, Jingxing</creator><creator>Zhang, Ziyou</creator><creator>Bironeau, Adrien</creator><creator>Guinault, Alain</creator><creator>Miquelard-Garnier, Guillaume</creator><creator>Sollogoub, Cyrille</creator><creator>Olah, Andrew</creator><creator>Baer, Eric</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-3191-7431</orcidid><orcidid>https://orcid.org/0000-0003-2204-3696</orcidid><orcidid>https://orcid.org/0000-0002-0251-8941</orcidid><orcidid>https://orcid.org/0000-0002-9087-0370</orcidid></search><sort><creationdate>20180509</creationdate><title>Breakup behavior of nanolayers in polymeric multilayer systems — Creation of nanosheets and nanodroplets</title><author>Feng, Jingxing ; Zhang, Ziyou ; Bironeau, Adrien ; Guinault, Alain ; Miquelard-Garnier, Guillaume ; Sollogoub, Cyrille ; Olah, Andrew ; Baer, Eric</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c455t-e8cda1589ba553053f06cd245e6ec8f2af833f876df80ea6adcdcbcad997b323</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Atomic force microscopy</topic><topic>Breakup</topic><topic>Calorimetry</topic><topic>Coextrusion</topic><topic>Differential scanning calorimetry</topic><topic>Engineering Sciences</topic><topic>Layer breakup</topic><topic>Light transmission</topic><topic>Microscopy</topic><topic>Multilayer coextrusion</topic><topic>Multilayers</topic><topic>Nanosheets</topic><topic>Oxygen</topic><topic>Permeability</topic><topic>Polycarbonate resins</topic><topic>Polymer nanodroplets</topic><topic>Polymethyl methacrylate</topic><topic>Polymethylmethacrylate</topic><topic>Polystyrene</topic><topic>Polystyrene resins</topic><topic>Thickness</topic><topic>X-ray scattering</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Feng, Jingxing</creatorcontrib><creatorcontrib>Zhang, Ziyou</creatorcontrib><creatorcontrib>Bironeau, Adrien</creatorcontrib><creatorcontrib>Guinault, Alain</creatorcontrib><creatorcontrib>Miquelard-Garnier, Guillaume</creatorcontrib><creatorcontrib>Sollogoub, Cyrille</creatorcontrib><creatorcontrib>Olah, Andrew</creatorcontrib><creatorcontrib>Baer, Eric</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Polymer (Guilford)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Feng, Jingxing</au><au>Zhang, Ziyou</au><au>Bironeau, Adrien</au><au>Guinault, Alain</au><au>Miquelard-Garnier, Guillaume</au><au>Sollogoub, Cyrille</au><au>Olah, Andrew</au><au>Baer, Eric</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Breakup behavior of nanolayers in polymeric multilayer systems — Creation of nanosheets and nanodroplets</atitle><jtitle>Polymer (Guilford)</jtitle><date>2018-05-09</date><risdate>2018</risdate><volume>143</volume><spage>19</spage><epage>27</epage><pages>19-27</pages><issn>0032-3861</issn><eissn>1873-2291</eissn><abstract>Multilayer films comprising polystyrene (PS)/polymethyl methalcrylate (PMMA) and PS/polycaprolatone (PCL) alternating nanolayers with varied layer thickness were fabricated by multilayer coextrusion. The nanolayers breakup phenomena of PMMA and PCL were characterized using atomic force microscopy (AFM), oxygen permeability, light transmission, wide-angle X-ray scattering (WAXS), and differential scanning calorimetry (DSC). The continuous layers started to break up into nanosheets and nanodroplets during the coextrusion process when the nominal layer thickness decreased to between 30 nm and 40 nm. Further decrease of the nominal layer thickness of PMMA and PCL resulted in less nanosheets and more nanodroplets. Oxygen permeability was effective for characterizing the onset thickness of layer breakup. The oxygen permeability for the PS/PCL system was modeled and demonstrated good correlation with estimated composition of continuous layers, nanosheets, and nanodroplets.
[Display omitted]
•Breakup behavior of the nanolayers during multilayer coextrusion is studied.•Continuous layers break up into nanosheets and nanodroplets when the nominal layer thickness is decreased to 30 nm.•Oxygen permeability is effective in characterizing the onset thickness of layer breakup.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.polymer.2018.03.049</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-3191-7431</orcidid><orcidid>https://orcid.org/0000-0003-2204-3696</orcidid><orcidid>https://orcid.org/0000-0002-0251-8941</orcidid><orcidid>https://orcid.org/0000-0002-9087-0370</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0032-3861 |
ispartof | Polymer (Guilford), 2018-05, Vol.143, p.19-27 |
issn | 0032-3861 1873-2291 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_01900655v1 |
source | Elsevier ScienceDirect Journals Complete |
subjects | Atomic force microscopy Breakup Calorimetry Coextrusion Differential scanning calorimetry Engineering Sciences Layer breakup Light transmission Microscopy Multilayer coextrusion Multilayers Nanosheets Oxygen Permeability Polycarbonate resins Polymer nanodroplets Polymethyl methacrylate Polymethylmethacrylate Polystyrene Polystyrene resins Thickness X-ray scattering |
title | Breakup behavior of nanolayers in polymeric multilayer systems — Creation of nanosheets and nanodroplets |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T14%3A23%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Breakup%20behavior%20of%20nanolayers%20in%20polymeric%20multilayer%20systems%20%E2%80%94%20Creation%20of%20nanosheets%20and%20nanodroplets&rft.jtitle=Polymer%20(Guilford)&rft.au=Feng,%20Jingxing&rft.date=2018-05-09&rft.volume=143&rft.spage=19&rft.epage=27&rft.pages=19-27&rft.issn=0032-3861&rft.eissn=1873-2291&rft_id=info:doi/10.1016/j.polymer.2018.03.049&rft_dat=%3Cproquest_hal_p%3E2068488105%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2068488105&rft_id=info:pmid/&rft_els_id=S0032386118302581&rfr_iscdi=true |