Breakup behavior of nanolayers in polymeric multilayer systems — Creation of nanosheets and nanodroplets

Multilayer films comprising polystyrene (PS)/polymethyl methalcrylate (PMMA) and PS/polycaprolatone (PCL) alternating nanolayers with varied layer thickness were fabricated by multilayer coextrusion. The nanolayers breakup phenomena of PMMA and PCL were characterized using atomic force microscopy (A...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Polymer (Guilford) 2018-05, Vol.143, p.19-27
Hauptverfasser: Feng, Jingxing, Zhang, Ziyou, Bironeau, Adrien, Guinault, Alain, Miquelard-Garnier, Guillaume, Sollogoub, Cyrille, Olah, Andrew, Baer, Eric
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 27
container_issue
container_start_page 19
container_title Polymer (Guilford)
container_volume 143
creator Feng, Jingxing
Zhang, Ziyou
Bironeau, Adrien
Guinault, Alain
Miquelard-Garnier, Guillaume
Sollogoub, Cyrille
Olah, Andrew
Baer, Eric
description Multilayer films comprising polystyrene (PS)/polymethyl methalcrylate (PMMA) and PS/polycaprolatone (PCL) alternating nanolayers with varied layer thickness were fabricated by multilayer coextrusion. The nanolayers breakup phenomena of PMMA and PCL were characterized using atomic force microscopy (AFM), oxygen permeability, light transmission, wide-angle X-ray scattering (WAXS), and differential scanning calorimetry (DSC). The continuous layers started to break up into nanosheets and nanodroplets during the coextrusion process when the nominal layer thickness decreased to between 30 nm and 40 nm. Further decrease of the nominal layer thickness of PMMA and PCL resulted in less nanosheets and more nanodroplets. Oxygen permeability was effective for characterizing the onset thickness of layer breakup. The oxygen permeability for the PS/PCL system was modeled and demonstrated good correlation with estimated composition of continuous layers, nanosheets, and nanodroplets. [Display omitted] •Breakup behavior of the nanolayers during multilayer coextrusion is studied.•Continuous layers break up into nanosheets and nanodroplets when the nominal layer thickness is decreased to 30 nm.•Oxygen permeability is effective in characterizing the onset thickness of layer breakup.
doi_str_mv 10.1016/j.polymer.2018.03.049
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01900655v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0032386118302581</els_id><sourcerecordid>2068488105</sourcerecordid><originalsourceid>FETCH-LOGICAL-c455t-e8cda1589ba553053f06cd245e6ec8f2af833f876df80ea6adcdcbcad997b323</originalsourceid><addsrcrecordid>eNqFkU1u2zAQhYmiAeo6OUIBAl11IWVIijK1KhIjPwUMZJM9QZMjmKosqqRswLscoifsSULHTrZdDWbmvQ9DPkK-MSgZsPq6K8fQH7YYSw5MlSBKqJpPZMbUQhScN-wzmQEIXghVsy_ka0odAHDJqxnpbiOa37uRrnFj9j5EGlo6mCH05oAxUT_QM9xbut31k39b0HRIE24T_ffyly4zYvJheLemDeKUqBncW-tiGPs8uCQXrekTXp3rnDzf3z0vH4vV08Ov5c2qsJWUU4HKOsOkatZGSgFStFBbxyuJNVrVctMqIVq1qF2rAE1tnHV2bY1rmsVacDEnP07Yjen1GP3WxIMOxuvHm5U-zoA1ALWUe5a130_aMYY_O0yT7sIuDvk6zaFWlVIsHzAn8qSyMaQUsf3AMtDHBHSnz5-kjwloEDonkH0_Tz7Mr937vE3W42DR-Yh20i74_xBeAbnslVI</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2068488105</pqid></control><display><type>article</type><title>Breakup behavior of nanolayers in polymeric multilayer systems — Creation of nanosheets and nanodroplets</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Feng, Jingxing ; Zhang, Ziyou ; Bironeau, Adrien ; Guinault, Alain ; Miquelard-Garnier, Guillaume ; Sollogoub, Cyrille ; Olah, Andrew ; Baer, Eric</creator><creatorcontrib>Feng, Jingxing ; Zhang, Ziyou ; Bironeau, Adrien ; Guinault, Alain ; Miquelard-Garnier, Guillaume ; Sollogoub, Cyrille ; Olah, Andrew ; Baer, Eric</creatorcontrib><description>Multilayer films comprising polystyrene (PS)/polymethyl methalcrylate (PMMA) and PS/polycaprolatone (PCL) alternating nanolayers with varied layer thickness were fabricated by multilayer coextrusion. The nanolayers breakup phenomena of PMMA and PCL were characterized using atomic force microscopy (AFM), oxygen permeability, light transmission, wide-angle X-ray scattering (WAXS), and differential scanning calorimetry (DSC). The continuous layers started to break up into nanosheets and nanodroplets during the coextrusion process when the nominal layer thickness decreased to between 30 nm and 40 nm. Further decrease of the nominal layer thickness of PMMA and PCL resulted in less nanosheets and more nanodroplets. Oxygen permeability was effective for characterizing the onset thickness of layer breakup. The oxygen permeability for the PS/PCL system was modeled and demonstrated good correlation with estimated composition of continuous layers, nanosheets, and nanodroplets. [Display omitted] •Breakup behavior of the nanolayers during multilayer coextrusion is studied.•Continuous layers break up into nanosheets and nanodroplets when the nominal layer thickness is decreased to 30 nm.•Oxygen permeability is effective in characterizing the onset thickness of layer breakup.</description><identifier>ISSN: 0032-3861</identifier><identifier>EISSN: 1873-2291</identifier><identifier>DOI: 10.1016/j.polymer.2018.03.049</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Atomic force microscopy ; Breakup ; Calorimetry ; Coextrusion ; Differential scanning calorimetry ; Engineering Sciences ; Layer breakup ; Light transmission ; Microscopy ; Multilayer coextrusion ; Multilayers ; Nanosheets ; Oxygen ; Permeability ; Polycarbonate resins ; Polymer nanodroplets ; Polymethyl methacrylate ; Polymethylmethacrylate ; Polystyrene ; Polystyrene resins ; Thickness ; X-ray scattering</subject><ispartof>Polymer (Guilford), 2018-05, Vol.143, p.19-27</ispartof><rights>2018 Elsevier Ltd</rights><rights>Copyright Elsevier BV May 9, 2018</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c455t-e8cda1589ba553053f06cd245e6ec8f2af833f876df80ea6adcdcbcad997b323</citedby><cites>FETCH-LOGICAL-c455t-e8cda1589ba553053f06cd245e6ec8f2af833f876df80ea6adcdcbcad997b323</cites><orcidid>0000-0002-3191-7431 ; 0000-0003-2204-3696 ; 0000-0002-0251-8941 ; 0000-0002-9087-0370</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.polymer.2018.03.049$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://hal.science/hal-01900655$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Feng, Jingxing</creatorcontrib><creatorcontrib>Zhang, Ziyou</creatorcontrib><creatorcontrib>Bironeau, Adrien</creatorcontrib><creatorcontrib>Guinault, Alain</creatorcontrib><creatorcontrib>Miquelard-Garnier, Guillaume</creatorcontrib><creatorcontrib>Sollogoub, Cyrille</creatorcontrib><creatorcontrib>Olah, Andrew</creatorcontrib><creatorcontrib>Baer, Eric</creatorcontrib><title>Breakup behavior of nanolayers in polymeric multilayer systems — Creation of nanosheets and nanodroplets</title><title>Polymer (Guilford)</title><description>Multilayer films comprising polystyrene (PS)/polymethyl methalcrylate (PMMA) and PS/polycaprolatone (PCL) alternating nanolayers with varied layer thickness were fabricated by multilayer coextrusion. The nanolayers breakup phenomena of PMMA and PCL were characterized using atomic force microscopy (AFM), oxygen permeability, light transmission, wide-angle X-ray scattering (WAXS), and differential scanning calorimetry (DSC). The continuous layers started to break up into nanosheets and nanodroplets during the coextrusion process when the nominal layer thickness decreased to between 30 nm and 40 nm. Further decrease of the nominal layer thickness of PMMA and PCL resulted in less nanosheets and more nanodroplets. Oxygen permeability was effective for characterizing the onset thickness of layer breakup. The oxygen permeability for the PS/PCL system was modeled and demonstrated good correlation with estimated composition of continuous layers, nanosheets, and nanodroplets. [Display omitted] •Breakup behavior of the nanolayers during multilayer coextrusion is studied.•Continuous layers break up into nanosheets and nanodroplets when the nominal layer thickness is decreased to 30 nm.•Oxygen permeability is effective in characterizing the onset thickness of layer breakup.</description><subject>Atomic force microscopy</subject><subject>Breakup</subject><subject>Calorimetry</subject><subject>Coextrusion</subject><subject>Differential scanning calorimetry</subject><subject>Engineering Sciences</subject><subject>Layer breakup</subject><subject>Light transmission</subject><subject>Microscopy</subject><subject>Multilayer coextrusion</subject><subject>Multilayers</subject><subject>Nanosheets</subject><subject>Oxygen</subject><subject>Permeability</subject><subject>Polycarbonate resins</subject><subject>Polymer nanodroplets</subject><subject>Polymethyl methacrylate</subject><subject>Polymethylmethacrylate</subject><subject>Polystyrene</subject><subject>Polystyrene resins</subject><subject>Thickness</subject><subject>X-ray scattering</subject><issn>0032-3861</issn><issn>1873-2291</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqFkU1u2zAQhYmiAeo6OUIBAl11IWVIijK1KhIjPwUMZJM9QZMjmKosqqRswLscoifsSULHTrZdDWbmvQ9DPkK-MSgZsPq6K8fQH7YYSw5MlSBKqJpPZMbUQhScN-wzmQEIXghVsy_ka0odAHDJqxnpbiOa37uRrnFj9j5EGlo6mCH05oAxUT_QM9xbut31k39b0HRIE24T_ffyly4zYvJheLemDeKUqBncW-tiGPs8uCQXrekTXp3rnDzf3z0vH4vV08Ov5c2qsJWUU4HKOsOkatZGSgFStFBbxyuJNVrVctMqIVq1qF2rAE1tnHV2bY1rmsVacDEnP07Yjen1GP3WxIMOxuvHm5U-zoA1ALWUe5a130_aMYY_O0yT7sIuDvk6zaFWlVIsHzAn8qSyMaQUsf3AMtDHBHSnz5-kjwloEDonkH0_Tz7Mr937vE3W42DR-Yh20i74_xBeAbnslVI</recordid><startdate>20180509</startdate><enddate>20180509</enddate><creator>Feng, Jingxing</creator><creator>Zhang, Ziyou</creator><creator>Bironeau, Adrien</creator><creator>Guinault, Alain</creator><creator>Miquelard-Garnier, Guillaume</creator><creator>Sollogoub, Cyrille</creator><creator>Olah, Andrew</creator><creator>Baer, Eric</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-3191-7431</orcidid><orcidid>https://orcid.org/0000-0003-2204-3696</orcidid><orcidid>https://orcid.org/0000-0002-0251-8941</orcidid><orcidid>https://orcid.org/0000-0002-9087-0370</orcidid></search><sort><creationdate>20180509</creationdate><title>Breakup behavior of nanolayers in polymeric multilayer systems — Creation of nanosheets and nanodroplets</title><author>Feng, Jingxing ; Zhang, Ziyou ; Bironeau, Adrien ; Guinault, Alain ; Miquelard-Garnier, Guillaume ; Sollogoub, Cyrille ; Olah, Andrew ; Baer, Eric</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c455t-e8cda1589ba553053f06cd245e6ec8f2af833f876df80ea6adcdcbcad997b323</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Atomic force microscopy</topic><topic>Breakup</topic><topic>Calorimetry</topic><topic>Coextrusion</topic><topic>Differential scanning calorimetry</topic><topic>Engineering Sciences</topic><topic>Layer breakup</topic><topic>Light transmission</topic><topic>Microscopy</topic><topic>Multilayer coextrusion</topic><topic>Multilayers</topic><topic>Nanosheets</topic><topic>Oxygen</topic><topic>Permeability</topic><topic>Polycarbonate resins</topic><topic>Polymer nanodroplets</topic><topic>Polymethyl methacrylate</topic><topic>Polymethylmethacrylate</topic><topic>Polystyrene</topic><topic>Polystyrene resins</topic><topic>Thickness</topic><topic>X-ray scattering</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Feng, Jingxing</creatorcontrib><creatorcontrib>Zhang, Ziyou</creatorcontrib><creatorcontrib>Bironeau, Adrien</creatorcontrib><creatorcontrib>Guinault, Alain</creatorcontrib><creatorcontrib>Miquelard-Garnier, Guillaume</creatorcontrib><creatorcontrib>Sollogoub, Cyrille</creatorcontrib><creatorcontrib>Olah, Andrew</creatorcontrib><creatorcontrib>Baer, Eric</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Polymer (Guilford)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Feng, Jingxing</au><au>Zhang, Ziyou</au><au>Bironeau, Adrien</au><au>Guinault, Alain</au><au>Miquelard-Garnier, Guillaume</au><au>Sollogoub, Cyrille</au><au>Olah, Andrew</au><au>Baer, Eric</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Breakup behavior of nanolayers in polymeric multilayer systems — Creation of nanosheets and nanodroplets</atitle><jtitle>Polymer (Guilford)</jtitle><date>2018-05-09</date><risdate>2018</risdate><volume>143</volume><spage>19</spage><epage>27</epage><pages>19-27</pages><issn>0032-3861</issn><eissn>1873-2291</eissn><abstract>Multilayer films comprising polystyrene (PS)/polymethyl methalcrylate (PMMA) and PS/polycaprolatone (PCL) alternating nanolayers with varied layer thickness were fabricated by multilayer coextrusion. The nanolayers breakup phenomena of PMMA and PCL were characterized using atomic force microscopy (AFM), oxygen permeability, light transmission, wide-angle X-ray scattering (WAXS), and differential scanning calorimetry (DSC). The continuous layers started to break up into nanosheets and nanodroplets during the coextrusion process when the nominal layer thickness decreased to between 30 nm and 40 nm. Further decrease of the nominal layer thickness of PMMA and PCL resulted in less nanosheets and more nanodroplets. Oxygen permeability was effective for characterizing the onset thickness of layer breakup. The oxygen permeability for the PS/PCL system was modeled and demonstrated good correlation with estimated composition of continuous layers, nanosheets, and nanodroplets. [Display omitted] •Breakup behavior of the nanolayers during multilayer coextrusion is studied.•Continuous layers break up into nanosheets and nanodroplets when the nominal layer thickness is decreased to 30 nm.•Oxygen permeability is effective in characterizing the onset thickness of layer breakup.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.polymer.2018.03.049</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-3191-7431</orcidid><orcidid>https://orcid.org/0000-0003-2204-3696</orcidid><orcidid>https://orcid.org/0000-0002-0251-8941</orcidid><orcidid>https://orcid.org/0000-0002-9087-0370</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0032-3861
ispartof Polymer (Guilford), 2018-05, Vol.143, p.19-27
issn 0032-3861
1873-2291
language eng
recordid cdi_hal_primary_oai_HAL_hal_01900655v1
source Elsevier ScienceDirect Journals Complete
subjects Atomic force microscopy
Breakup
Calorimetry
Coextrusion
Differential scanning calorimetry
Engineering Sciences
Layer breakup
Light transmission
Microscopy
Multilayer coextrusion
Multilayers
Nanosheets
Oxygen
Permeability
Polycarbonate resins
Polymer nanodroplets
Polymethyl methacrylate
Polymethylmethacrylate
Polystyrene
Polystyrene resins
Thickness
X-ray scattering
title Breakup behavior of nanolayers in polymeric multilayer systems — Creation of nanosheets and nanodroplets
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T14%3A23%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Breakup%20behavior%20of%20nanolayers%20in%20polymeric%20multilayer%20systems%20%E2%80%94%20Creation%20of%20nanosheets%20and%20nanodroplets&rft.jtitle=Polymer%20(Guilford)&rft.au=Feng,%20Jingxing&rft.date=2018-05-09&rft.volume=143&rft.spage=19&rft.epage=27&rft.pages=19-27&rft.issn=0032-3861&rft.eissn=1873-2291&rft_id=info:doi/10.1016/j.polymer.2018.03.049&rft_dat=%3Cproquest_hal_p%3E2068488105%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2068488105&rft_id=info:pmid/&rft_els_id=S0032386118302581&rfr_iscdi=true