k-maxitive fuzzy measures: A scalable approach to model interactions
Fuzzy measures are powerful at modeling interactions between elements. Unfortunately, they use a number of coefficients that exponentially grows with the number of elements. Beyond the computational complexity, assigning a value to any coalition of a large set of elements does not make sense. k-orde...
Gespeichert in:
Veröffentlicht in: | Fuzzy sets and systems 2017-10, Vol.324, p.33-48 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 48 |
---|---|
container_issue | |
container_start_page | 33 |
container_title | Fuzzy sets and systems |
container_volume | 324 |
creator | Murillo, Javier Guillaume, Serge Bulacio, Pilar |
description | Fuzzy measures are powerful at modeling interactions between elements. Unfortunately, they use a number of coefficients that exponentially grows with the number of elements. Beyond the computational complexity, assigning a value to any coalition of a large set of elements does not make sense. k-order measures model interactions involving at most k elements. The number of coefficients to identify is reduced and their modeling capacity is preserved in real problems where the number of interacting elements is limited. In extreme situations of full redundancy or complementariness, it is mathematically proven that the complete fuzzy measure is both k-additive and k-maxitive. A learning algorithm to identify k-maxitive measures from labeled data is designed on the basis of HLMS (Heuristic Least Mean Squares). In a classification context, the study of synthetic data with partial redundancy or complementariness supports the idea that the difference between full and partial interaction is a matter of degree, not of kind. Dealing with two real world datasets, a comparison of the complete fuzzy measure and a k-maxitive one shows the number of interacting elements is limited and the k-maxitive measures yield the same characterization of interactions and a comparable classification accuracy. |
doi_str_mv | 10.1016/j.fss.2017.04.011 |
format | Article |
fullrecord | <record><control><sourceid>hal_cross</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01900500v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S016501141730177X</els_id><sourcerecordid>oai_HAL_hal_01900500v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c374t-7eca3c2c81ac88e8ee60a354a2d0b974915a20ace3c89c3f6741b451b3ac74df3</originalsourceid><addsrcrecordid>eNp9kE1Lw0AQhhdRsFZ_gLe9ekicSTZfeir1o0LBi56XyWZCtyZN2U2L7a83oeLR0wwvzzMwrxC3CCECpvfrsPY-jACzEFQIiGdignkWBWkOeC4mA5MEQ6wuxZX3a4BhT2Einr6Clr5tb_cs693xeJAtk9859g9yJr2hhsqGJW23riOzkn0n267iRtpNz45Mb7uNvxYXNTWeb37nVHy-PH_MF8Hy_fVtPlsGJs5UH2RsKDaRyZFMnnPOnALFiaKogrLIVIEJRUCGY5MXJq7TTGGpEixjMpmq6ngq7k53V9TorbMtuYPuyOrFbKnHDLAASAD2OLB4Yo3rvHdc_wkIeqxMr_VQmR4r06AGdXQeTw4PT-wtO-2N5Y3hyjo2va46-4_9A_blc-w</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>k-maxitive fuzzy measures: A scalable approach to model interactions</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Murillo, Javier ; Guillaume, Serge ; Bulacio, Pilar</creator><creatorcontrib>Murillo, Javier ; Guillaume, Serge ; Bulacio, Pilar</creatorcontrib><description>Fuzzy measures are powerful at modeling interactions between elements. Unfortunately, they use a number of coefficients that exponentially grows with the number of elements. Beyond the computational complexity, assigning a value to any coalition of a large set of elements does not make sense. k-order measures model interactions involving at most k elements. The number of coefficients to identify is reduced and their modeling capacity is preserved in real problems where the number of interacting elements is limited. In extreme situations of full redundancy or complementariness, it is mathematically proven that the complete fuzzy measure is both k-additive and k-maxitive. A learning algorithm to identify k-maxitive measures from labeled data is designed on the basis of HLMS (Heuristic Least Mean Squares). In a classification context, the study of synthetic data with partial redundancy or complementariness supports the idea that the difference between full and partial interaction is a matter of degree, not of kind. Dealing with two real world datasets, a comparison of the complete fuzzy measure and a k-maxitive one shows the number of interacting elements is limited and the k-maxitive measures yield the same characterization of interactions and a comparable classification accuracy.</description><identifier>ISSN: 0165-0114</identifier><identifier>EISSN: 1872-6801</identifier><identifier>DOI: 10.1016/j.fss.2017.04.011</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Choquet ; Environmental Sciences ; Fuzzy measure ; HLMS ; k-order measures ; Möbius ; Shapley</subject><ispartof>Fuzzy sets and systems, 2017-10, Vol.324, p.33-48</ispartof><rights>2017 Elsevier B.V.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c374t-7eca3c2c81ac88e8ee60a354a2d0b974915a20ace3c89c3f6741b451b3ac74df3</citedby><cites>FETCH-LOGICAL-c374t-7eca3c2c81ac88e8ee60a354a2d0b974915a20ace3c89c3f6741b451b3ac74df3</cites><orcidid>0000-0002-6769-9982</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S016501141730177X$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://hal.science/hal-01900500$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Murillo, Javier</creatorcontrib><creatorcontrib>Guillaume, Serge</creatorcontrib><creatorcontrib>Bulacio, Pilar</creatorcontrib><title>k-maxitive fuzzy measures: A scalable approach to model interactions</title><title>Fuzzy sets and systems</title><description>Fuzzy measures are powerful at modeling interactions between elements. Unfortunately, they use a number of coefficients that exponentially grows with the number of elements. Beyond the computational complexity, assigning a value to any coalition of a large set of elements does not make sense. k-order measures model interactions involving at most k elements. The number of coefficients to identify is reduced and their modeling capacity is preserved in real problems where the number of interacting elements is limited. In extreme situations of full redundancy or complementariness, it is mathematically proven that the complete fuzzy measure is both k-additive and k-maxitive. A learning algorithm to identify k-maxitive measures from labeled data is designed on the basis of HLMS (Heuristic Least Mean Squares). In a classification context, the study of synthetic data with partial redundancy or complementariness supports the idea that the difference between full and partial interaction is a matter of degree, not of kind. Dealing with two real world datasets, a comparison of the complete fuzzy measure and a k-maxitive one shows the number of interacting elements is limited and the k-maxitive measures yield the same characterization of interactions and a comparable classification accuracy.</description><subject>Choquet</subject><subject>Environmental Sciences</subject><subject>Fuzzy measure</subject><subject>HLMS</subject><subject>k-order measures</subject><subject>Möbius</subject><subject>Shapley</subject><issn>0165-0114</issn><issn>1872-6801</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9kE1Lw0AQhhdRsFZ_gLe9ekicSTZfeir1o0LBi56XyWZCtyZN2U2L7a83oeLR0wwvzzMwrxC3CCECpvfrsPY-jACzEFQIiGdignkWBWkOeC4mA5MEQ6wuxZX3a4BhT2Einr6Clr5tb_cs693xeJAtk9859g9yJr2hhsqGJW23riOzkn0n267iRtpNz45Mb7uNvxYXNTWeb37nVHy-PH_MF8Hy_fVtPlsGJs5UH2RsKDaRyZFMnnPOnALFiaKogrLIVIEJRUCGY5MXJq7TTGGpEixjMpmq6ngq7k53V9TorbMtuYPuyOrFbKnHDLAASAD2OLB4Yo3rvHdc_wkIeqxMr_VQmR4r06AGdXQeTw4PT-wtO-2N5Y3hyjo2va46-4_9A_blc-w</recordid><startdate>20171001</startdate><enddate>20171001</enddate><creator>Murillo, Javier</creator><creator>Guillaume, Serge</creator><creator>Bulacio, Pilar</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-6769-9982</orcidid></search><sort><creationdate>20171001</creationdate><title>k-maxitive fuzzy measures: A scalable approach to model interactions</title><author>Murillo, Javier ; Guillaume, Serge ; Bulacio, Pilar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c374t-7eca3c2c81ac88e8ee60a354a2d0b974915a20ace3c89c3f6741b451b3ac74df3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Choquet</topic><topic>Environmental Sciences</topic><topic>Fuzzy measure</topic><topic>HLMS</topic><topic>k-order measures</topic><topic>Möbius</topic><topic>Shapley</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Murillo, Javier</creatorcontrib><creatorcontrib>Guillaume, Serge</creatorcontrib><creatorcontrib>Bulacio, Pilar</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Fuzzy sets and systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Murillo, Javier</au><au>Guillaume, Serge</au><au>Bulacio, Pilar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>k-maxitive fuzzy measures: A scalable approach to model interactions</atitle><jtitle>Fuzzy sets and systems</jtitle><date>2017-10-01</date><risdate>2017</risdate><volume>324</volume><spage>33</spage><epage>48</epage><pages>33-48</pages><issn>0165-0114</issn><eissn>1872-6801</eissn><abstract>Fuzzy measures are powerful at modeling interactions between elements. Unfortunately, they use a number of coefficients that exponentially grows with the number of elements. Beyond the computational complexity, assigning a value to any coalition of a large set of elements does not make sense. k-order measures model interactions involving at most k elements. The number of coefficients to identify is reduced and their modeling capacity is preserved in real problems where the number of interacting elements is limited. In extreme situations of full redundancy or complementariness, it is mathematically proven that the complete fuzzy measure is both k-additive and k-maxitive. A learning algorithm to identify k-maxitive measures from labeled data is designed on the basis of HLMS (Heuristic Least Mean Squares). In a classification context, the study of synthetic data with partial redundancy or complementariness supports the idea that the difference between full and partial interaction is a matter of degree, not of kind. Dealing with two real world datasets, a comparison of the complete fuzzy measure and a k-maxitive one shows the number of interacting elements is limited and the k-maxitive measures yield the same characterization of interactions and a comparable classification accuracy.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.fss.2017.04.011</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-6769-9982</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0165-0114 |
ispartof | Fuzzy sets and systems, 2017-10, Vol.324, p.33-48 |
issn | 0165-0114 1872-6801 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_01900500v1 |
source | Elsevier ScienceDirect Journals Complete |
subjects | Choquet Environmental Sciences Fuzzy measure HLMS k-order measures Möbius Shapley |
title | k-maxitive fuzzy measures: A scalable approach to model interactions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T04%3A53%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=k-maxitive%20fuzzy%20measures:%20A%20scalable%20approach%20to%20model%20interactions&rft.jtitle=Fuzzy%20sets%20and%20systems&rft.au=Murillo,%20Javier&rft.date=2017-10-01&rft.volume=324&rft.spage=33&rft.epage=48&rft.pages=33-48&rft.issn=0165-0114&rft.eissn=1872-6801&rft_id=info:doi/10.1016/j.fss.2017.04.011&rft_dat=%3Chal_cross%3Eoai_HAL_hal_01900500v1%3C/hal_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S016501141730177X&rfr_iscdi=true |