k-maxitive fuzzy measures: A scalable approach to model interactions

Fuzzy measures are powerful at modeling interactions between elements. Unfortunately, they use a number of coefficients that exponentially grows with the number of elements. Beyond the computational complexity, assigning a value to any coalition of a large set of elements does not make sense. k-orde...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Fuzzy sets and systems 2017-10, Vol.324, p.33-48
Hauptverfasser: Murillo, Javier, Guillaume, Serge, Bulacio, Pilar
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 48
container_issue
container_start_page 33
container_title Fuzzy sets and systems
container_volume 324
creator Murillo, Javier
Guillaume, Serge
Bulacio, Pilar
description Fuzzy measures are powerful at modeling interactions between elements. Unfortunately, they use a number of coefficients that exponentially grows with the number of elements. Beyond the computational complexity, assigning a value to any coalition of a large set of elements does not make sense. k-order measures model interactions involving at most k elements. The number of coefficients to identify is reduced and their modeling capacity is preserved in real problems where the number of interacting elements is limited. In extreme situations of full redundancy or complementariness, it is mathematically proven that the complete fuzzy measure is both k-additive and k-maxitive. A learning algorithm to identify k-maxitive measures from labeled data is designed on the basis of HLMS (Heuristic Least Mean Squares). In a classification context, the study of synthetic data with partial redundancy or complementariness supports the idea that the difference between full and partial interaction is a matter of degree, not of kind. Dealing with two real world datasets, a comparison of the complete fuzzy measure and a k-maxitive one shows the number of interacting elements is limited and the k-maxitive measures yield the same characterization of interactions and a comparable classification accuracy.
doi_str_mv 10.1016/j.fss.2017.04.011
format Article
fullrecord <record><control><sourceid>hal_cross</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01900500v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S016501141730177X</els_id><sourcerecordid>oai_HAL_hal_01900500v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c374t-7eca3c2c81ac88e8ee60a354a2d0b974915a20ace3c89c3f6741b451b3ac74df3</originalsourceid><addsrcrecordid>eNp9kE1Lw0AQhhdRsFZ_gLe9ekicSTZfeir1o0LBi56XyWZCtyZN2U2L7a83oeLR0wwvzzMwrxC3CCECpvfrsPY-jACzEFQIiGdignkWBWkOeC4mA5MEQ6wuxZX3a4BhT2Einr6Clr5tb_cs693xeJAtk9859g9yJr2hhsqGJW23riOzkn0n267iRtpNz45Mb7uNvxYXNTWeb37nVHy-PH_MF8Hy_fVtPlsGJs5UH2RsKDaRyZFMnnPOnALFiaKogrLIVIEJRUCGY5MXJq7TTGGpEixjMpmq6ngq7k53V9TorbMtuYPuyOrFbKnHDLAASAD2OLB4Yo3rvHdc_wkIeqxMr_VQmR4r06AGdXQeTw4PT-wtO-2N5Y3hyjo2va46-4_9A_blc-w</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>k-maxitive fuzzy measures: A scalable approach to model interactions</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Murillo, Javier ; Guillaume, Serge ; Bulacio, Pilar</creator><creatorcontrib>Murillo, Javier ; Guillaume, Serge ; Bulacio, Pilar</creatorcontrib><description>Fuzzy measures are powerful at modeling interactions between elements. Unfortunately, they use a number of coefficients that exponentially grows with the number of elements. Beyond the computational complexity, assigning a value to any coalition of a large set of elements does not make sense. k-order measures model interactions involving at most k elements. The number of coefficients to identify is reduced and their modeling capacity is preserved in real problems where the number of interacting elements is limited. In extreme situations of full redundancy or complementariness, it is mathematically proven that the complete fuzzy measure is both k-additive and k-maxitive. A learning algorithm to identify k-maxitive measures from labeled data is designed on the basis of HLMS (Heuristic Least Mean Squares). In a classification context, the study of synthetic data with partial redundancy or complementariness supports the idea that the difference between full and partial interaction is a matter of degree, not of kind. Dealing with two real world datasets, a comparison of the complete fuzzy measure and a k-maxitive one shows the number of interacting elements is limited and the k-maxitive measures yield the same characterization of interactions and a comparable classification accuracy.</description><identifier>ISSN: 0165-0114</identifier><identifier>EISSN: 1872-6801</identifier><identifier>DOI: 10.1016/j.fss.2017.04.011</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Choquet ; Environmental Sciences ; Fuzzy measure ; HLMS ; k-order measures ; Möbius ; Shapley</subject><ispartof>Fuzzy sets and systems, 2017-10, Vol.324, p.33-48</ispartof><rights>2017 Elsevier B.V.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c374t-7eca3c2c81ac88e8ee60a354a2d0b974915a20ace3c89c3f6741b451b3ac74df3</citedby><cites>FETCH-LOGICAL-c374t-7eca3c2c81ac88e8ee60a354a2d0b974915a20ace3c89c3f6741b451b3ac74df3</cites><orcidid>0000-0002-6769-9982</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S016501141730177X$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://hal.science/hal-01900500$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Murillo, Javier</creatorcontrib><creatorcontrib>Guillaume, Serge</creatorcontrib><creatorcontrib>Bulacio, Pilar</creatorcontrib><title>k-maxitive fuzzy measures: A scalable approach to model interactions</title><title>Fuzzy sets and systems</title><description>Fuzzy measures are powerful at modeling interactions between elements. Unfortunately, they use a number of coefficients that exponentially grows with the number of elements. Beyond the computational complexity, assigning a value to any coalition of a large set of elements does not make sense. k-order measures model interactions involving at most k elements. The number of coefficients to identify is reduced and their modeling capacity is preserved in real problems where the number of interacting elements is limited. In extreme situations of full redundancy or complementariness, it is mathematically proven that the complete fuzzy measure is both k-additive and k-maxitive. A learning algorithm to identify k-maxitive measures from labeled data is designed on the basis of HLMS (Heuristic Least Mean Squares). In a classification context, the study of synthetic data with partial redundancy or complementariness supports the idea that the difference between full and partial interaction is a matter of degree, not of kind. Dealing with two real world datasets, a comparison of the complete fuzzy measure and a k-maxitive one shows the number of interacting elements is limited and the k-maxitive measures yield the same characterization of interactions and a comparable classification accuracy.</description><subject>Choquet</subject><subject>Environmental Sciences</subject><subject>Fuzzy measure</subject><subject>HLMS</subject><subject>k-order measures</subject><subject>Möbius</subject><subject>Shapley</subject><issn>0165-0114</issn><issn>1872-6801</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9kE1Lw0AQhhdRsFZ_gLe9ekicSTZfeir1o0LBi56XyWZCtyZN2U2L7a83oeLR0wwvzzMwrxC3CCECpvfrsPY-jACzEFQIiGdignkWBWkOeC4mA5MEQ6wuxZX3a4BhT2Einr6Clr5tb_cs693xeJAtk9859g9yJr2hhsqGJW23riOzkn0n267iRtpNz45Mb7uNvxYXNTWeb37nVHy-PH_MF8Hy_fVtPlsGJs5UH2RsKDaRyZFMnnPOnALFiaKogrLIVIEJRUCGY5MXJq7TTGGpEixjMpmq6ngq7k53V9TorbMtuYPuyOrFbKnHDLAASAD2OLB4Yo3rvHdc_wkIeqxMr_VQmR4r06AGdXQeTw4PT-wtO-2N5Y3hyjo2va46-4_9A_blc-w</recordid><startdate>20171001</startdate><enddate>20171001</enddate><creator>Murillo, Javier</creator><creator>Guillaume, Serge</creator><creator>Bulacio, Pilar</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-6769-9982</orcidid></search><sort><creationdate>20171001</creationdate><title>k-maxitive fuzzy measures: A scalable approach to model interactions</title><author>Murillo, Javier ; Guillaume, Serge ; Bulacio, Pilar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c374t-7eca3c2c81ac88e8ee60a354a2d0b974915a20ace3c89c3f6741b451b3ac74df3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Choquet</topic><topic>Environmental Sciences</topic><topic>Fuzzy measure</topic><topic>HLMS</topic><topic>k-order measures</topic><topic>Möbius</topic><topic>Shapley</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Murillo, Javier</creatorcontrib><creatorcontrib>Guillaume, Serge</creatorcontrib><creatorcontrib>Bulacio, Pilar</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Fuzzy sets and systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Murillo, Javier</au><au>Guillaume, Serge</au><au>Bulacio, Pilar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>k-maxitive fuzzy measures: A scalable approach to model interactions</atitle><jtitle>Fuzzy sets and systems</jtitle><date>2017-10-01</date><risdate>2017</risdate><volume>324</volume><spage>33</spage><epage>48</epage><pages>33-48</pages><issn>0165-0114</issn><eissn>1872-6801</eissn><abstract>Fuzzy measures are powerful at modeling interactions between elements. Unfortunately, they use a number of coefficients that exponentially grows with the number of elements. Beyond the computational complexity, assigning a value to any coalition of a large set of elements does not make sense. k-order measures model interactions involving at most k elements. The number of coefficients to identify is reduced and their modeling capacity is preserved in real problems where the number of interacting elements is limited. In extreme situations of full redundancy or complementariness, it is mathematically proven that the complete fuzzy measure is both k-additive and k-maxitive. A learning algorithm to identify k-maxitive measures from labeled data is designed on the basis of HLMS (Heuristic Least Mean Squares). In a classification context, the study of synthetic data with partial redundancy or complementariness supports the idea that the difference between full and partial interaction is a matter of degree, not of kind. Dealing with two real world datasets, a comparison of the complete fuzzy measure and a k-maxitive one shows the number of interacting elements is limited and the k-maxitive measures yield the same characterization of interactions and a comparable classification accuracy.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.fss.2017.04.011</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-6769-9982</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0165-0114
ispartof Fuzzy sets and systems, 2017-10, Vol.324, p.33-48
issn 0165-0114
1872-6801
language eng
recordid cdi_hal_primary_oai_HAL_hal_01900500v1
source Elsevier ScienceDirect Journals Complete
subjects Choquet
Environmental Sciences
Fuzzy measure
HLMS
k-order measures
Möbius
Shapley
title k-maxitive fuzzy measures: A scalable approach to model interactions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T04%3A53%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=k-maxitive%20fuzzy%20measures:%20A%20scalable%20approach%20to%20model%20interactions&rft.jtitle=Fuzzy%20sets%20and%20systems&rft.au=Murillo,%20Javier&rft.date=2017-10-01&rft.volume=324&rft.spage=33&rft.epage=48&rft.pages=33-48&rft.issn=0165-0114&rft.eissn=1872-6801&rft_id=info:doi/10.1016/j.fss.2017.04.011&rft_dat=%3Chal_cross%3Eoai_HAL_hal_01900500v1%3C/hal_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S016501141730177X&rfr_iscdi=true