Geometrical structures for radiation biology research as implemented in the TOPAS-nBio toolkit
Computational simulations, such as Monte Carlo track structure simulations, offer a powerful tool for quantitatively investigating radiation interactions within cells. The modelling of the spatial distribution of energy deposition events as well as diffusion of chemical free radical species, within...
Gespeichert in:
Veröffentlicht in: | Physics in medicine & biology 2018-09, Vol.63 (17), p.175018-175018 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 175018 |
---|---|
container_issue | 17 |
container_start_page | 175018 |
container_title | Physics in medicine & biology |
container_volume | 63 |
creator | McNamara, Aimee L Ramos-Méndez, José Perl, Joseph Held, Kathryn Dominguez, Naoki Moreno, Eduardo Henthorn, Nicholas T Kirkby, Karen J Meylan, Sylvain Villagrasa, Carmen Incerti, Sebastien Faddegon, Bruce Paganetti, Harald Schuemann, Jan |
description | Computational simulations, such as Monte Carlo track structure simulations, offer a powerful tool for quantitatively investigating radiation interactions within cells. The modelling of the spatial distribution of energy deposition events as well as diffusion of chemical free radical species, within realistic biological geometries, can help provide a comprehensive understanding of the effects of radiation on cells. Track structure simulations, however, generally require advanced computing skills to implement. The TOPAS-nBio toolkit, an extension to TOPAS (TOol for PArticle Simulation), aims to provide users with a comprehensive framework for radiobiology simulations, without the need for advanced computing skills. This includes providing users with an extensive library of advanced, realistic, biological geometries ranging from the micrometer scale (e.g. cells and organelles) down to the nanometer scale (e.g. DNA molecules and proteins). Here we present the geometries available in TOPAS-nBio. |
doi_str_mv | 10.1088/1361-6560/aad8eb |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01897238v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2085662755</sourcerecordid><originalsourceid>FETCH-LOGICAL-c593t-1622bcaedf3f89e56f4ee4988a50135ec89029b882d60e06e9c31c24c6d010563</originalsourceid><addsrcrecordid>eNp9kd9r1TAUx4Mo7jp990mCTxOsy48mTV-E69BNuDDB-WpI09M1s226JB3svzeXzouKCIHAOZ_z5SQfhF5S8o4SpU4pl7SQQpJTY1oFzSO0OZQeow0hnBY1FeIIPYvxhhBKFSufoiNO8rSiZIO-n4MfIQVnzYBjCotNS4CIOx9wMK0zyfkJN84P_voe5w6YYHtsInbjPMAIU4IWuwmnHvDV5Zft12L64DxO3g8_XHqOnnRmiPDi4T5G3z59vDq7KHaX55_PtrvCipqngkrGGmug7XinahCyKwHKWikjCOUCrKoJqxulWCsJEAm15dSy0sqWUCIkP0bv19x5aUZobV4rmEHPwY0m3GtvnP6zM7leX_s7LWklpSpzwOs1wMfkdLQuge2tnyawSdOyEiVjGXqzQv1f2Rfbnd7XCFV1xbi6o5k9edgo-NsFYtKjixaGwUzgl6gZUUJKVgmRUbKiNvgYA3SHbEr03rPeS9V7qXr1nEde_f7ew8AvsRl4uwLOz_rGL2HK3_-_vJN_4PPYaMk1rfLJIpSes6Cf9cm_8g</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2085662755</pqid></control><display><type>article</type><title>Geometrical structures for radiation biology research as implemented in the TOPAS-nBio toolkit</title><source>MEDLINE</source><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>McNamara, Aimee L ; Ramos-Méndez, José ; Perl, Joseph ; Held, Kathryn ; Dominguez, Naoki ; Moreno, Eduardo ; Henthorn, Nicholas T ; Kirkby, Karen J ; Meylan, Sylvain ; Villagrasa, Carmen ; Incerti, Sebastien ; Faddegon, Bruce ; Paganetti, Harald ; Schuemann, Jan</creator><creatorcontrib>McNamara, Aimee L ; Ramos-Méndez, José ; Perl, Joseph ; Held, Kathryn ; Dominguez, Naoki ; Moreno, Eduardo ; Henthorn, Nicholas T ; Kirkby, Karen J ; Meylan, Sylvain ; Villagrasa, Carmen ; Incerti, Sebastien ; Faddegon, Bruce ; Paganetti, Harald ; Schuemann, Jan ; SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States)</creatorcontrib><description>Computational simulations, such as Monte Carlo track structure simulations, offer a powerful tool for quantitatively investigating radiation interactions within cells. The modelling of the spatial distribution of energy deposition events as well as diffusion of chemical free radical species, within realistic biological geometries, can help provide a comprehensive understanding of the effects of radiation on cells. Track structure simulations, however, generally require advanced computing skills to implement. The TOPAS-nBio toolkit, an extension to TOPAS (TOol for PArticle Simulation), aims to provide users with a comprehensive framework for radiobiology simulations, without the need for advanced computing skills. This includes providing users with an extensive library of advanced, realistic, biological geometries ranging from the micrometer scale (e.g. cells and organelles) down to the nanometer scale (e.g. DNA molecules and proteins). Here we present the geometries available in TOPAS-nBio.</description><identifier>ISSN: 0031-9155</identifier><identifier>ISSN: 1361-6560</identifier><identifier>EISSN: 1361-6560</identifier><identifier>DOI: 10.1088/1361-6560/aad8eb</identifier><identifier>PMID: 30088810</identifier><identifier>CODEN: PHMBA7</identifier><language>eng</language><publisher>England: IOP Publishing</publisher><subject>BASIC BIOLOGICAL SCIENCES ; Cell Physiological Phenomena ; Computer Simulation ; DNA models ; Humans ; Macromolecular Substances - chemistry ; MATHEMATICS AND COMPUTING ; Monte Carlo Method ; Monte Carlo track structure ; neurons ; Physics ; radiobiology ; Radiobiology - methods</subject><ispartof>Physics in medicine & biology, 2018-09, Vol.63 (17), p.175018-175018</ispartof><rights>2018 Institute of Physics and Engineering in Medicine</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c593t-1622bcaedf3f89e56f4ee4988a50135ec89029b882d60e06e9c31c24c6d010563</citedby><cites>FETCH-LOGICAL-c593t-1622bcaedf3f89e56f4ee4988a50135ec89029b882d60e06e9c31c24c6d010563</cites><orcidid>0000-0002-8106-5142 ; 0000-0002-7554-8818 ; 0000-0002-0901-210X ; 0000-0001-8792-0464 ; 0000-0002-1738-8019 ; 0000-0002-0619-2053 ; 0000000187920464 ; 0000000275548818 ; 000000020901210X ; 0000000281065142</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1361-6560/aad8eb/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>230,314,780,784,885,27924,27925,53846,53893</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30088810$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-01897238$$DView record in HAL$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1475422$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>McNamara, Aimee L</creatorcontrib><creatorcontrib>Ramos-Méndez, José</creatorcontrib><creatorcontrib>Perl, Joseph</creatorcontrib><creatorcontrib>Held, Kathryn</creatorcontrib><creatorcontrib>Dominguez, Naoki</creatorcontrib><creatorcontrib>Moreno, Eduardo</creatorcontrib><creatorcontrib>Henthorn, Nicholas T</creatorcontrib><creatorcontrib>Kirkby, Karen J</creatorcontrib><creatorcontrib>Meylan, Sylvain</creatorcontrib><creatorcontrib>Villagrasa, Carmen</creatorcontrib><creatorcontrib>Incerti, Sebastien</creatorcontrib><creatorcontrib>Faddegon, Bruce</creatorcontrib><creatorcontrib>Paganetti, Harald</creatorcontrib><creatorcontrib>Schuemann, Jan</creatorcontrib><creatorcontrib>SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States)</creatorcontrib><title>Geometrical structures for radiation biology research as implemented in the TOPAS-nBio toolkit</title><title>Physics in medicine & biology</title><addtitle>PMB</addtitle><addtitle>Phys. Med. Biol</addtitle><description>Computational simulations, such as Monte Carlo track structure simulations, offer a powerful tool for quantitatively investigating radiation interactions within cells. The modelling of the spatial distribution of energy deposition events as well as diffusion of chemical free radical species, within realistic biological geometries, can help provide a comprehensive understanding of the effects of radiation on cells. Track structure simulations, however, generally require advanced computing skills to implement. The TOPAS-nBio toolkit, an extension to TOPAS (TOol for PArticle Simulation), aims to provide users with a comprehensive framework for radiobiology simulations, without the need for advanced computing skills. This includes providing users with an extensive library of advanced, realistic, biological geometries ranging from the micrometer scale (e.g. cells and organelles) down to the nanometer scale (e.g. DNA molecules and proteins). Here we present the geometries available in TOPAS-nBio.</description><subject>BASIC BIOLOGICAL SCIENCES</subject><subject>Cell Physiological Phenomena</subject><subject>Computer Simulation</subject><subject>DNA models</subject><subject>Humans</subject><subject>Macromolecular Substances - chemistry</subject><subject>MATHEMATICS AND COMPUTING</subject><subject>Monte Carlo Method</subject><subject>Monte Carlo track structure</subject><subject>neurons</subject><subject>Physics</subject><subject>radiobiology</subject><subject>Radiobiology - methods</subject><issn>0031-9155</issn><issn>1361-6560</issn><issn>1361-6560</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kd9r1TAUx4Mo7jp990mCTxOsy48mTV-E69BNuDDB-WpI09M1s226JB3svzeXzouKCIHAOZ_z5SQfhF5S8o4SpU4pl7SQQpJTY1oFzSO0OZQeow0hnBY1FeIIPYvxhhBKFSufoiNO8rSiZIO-n4MfIQVnzYBjCotNS4CIOx9wMK0zyfkJN84P_voe5w6YYHtsInbjPMAIU4IWuwmnHvDV5Zft12L64DxO3g8_XHqOnnRmiPDi4T5G3z59vDq7KHaX55_PtrvCipqngkrGGmug7XinahCyKwHKWikjCOUCrKoJqxulWCsJEAm15dSy0sqWUCIkP0bv19x5aUZobV4rmEHPwY0m3GtvnP6zM7leX_s7LWklpSpzwOs1wMfkdLQuge2tnyawSdOyEiVjGXqzQv1f2Rfbnd7XCFV1xbi6o5k9edgo-NsFYtKjixaGwUzgl6gZUUJKVgmRUbKiNvgYA3SHbEr03rPeS9V7qXr1nEde_f7ew8AvsRl4uwLOz_rGL2HK3_-_vJN_4PPYaMk1rfLJIpSes6Cf9cm_8g</recordid><startdate>20180906</startdate><enddate>20180906</enddate><creator>McNamara, Aimee L</creator><creator>Ramos-Méndez, José</creator><creator>Perl, Joseph</creator><creator>Held, Kathryn</creator><creator>Dominguez, Naoki</creator><creator>Moreno, Eduardo</creator><creator>Henthorn, Nicholas T</creator><creator>Kirkby, Karen J</creator><creator>Meylan, Sylvain</creator><creator>Villagrasa, Carmen</creator><creator>Incerti, Sebastien</creator><creator>Faddegon, Bruce</creator><creator>Paganetti, Harald</creator><creator>Schuemann, Jan</creator><general>IOP Publishing</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>1XC</scope><scope>OIOZB</scope><scope>OTOTI</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-8106-5142</orcidid><orcidid>https://orcid.org/0000-0002-7554-8818</orcidid><orcidid>https://orcid.org/0000-0002-0901-210X</orcidid><orcidid>https://orcid.org/0000-0001-8792-0464</orcidid><orcidid>https://orcid.org/0000-0002-1738-8019</orcidid><orcidid>https://orcid.org/0000-0002-0619-2053</orcidid><orcidid>https://orcid.org/0000000187920464</orcidid><orcidid>https://orcid.org/0000000275548818</orcidid><orcidid>https://orcid.org/000000020901210X</orcidid><orcidid>https://orcid.org/0000000281065142</orcidid></search><sort><creationdate>20180906</creationdate><title>Geometrical structures for radiation biology research as implemented in the TOPAS-nBio toolkit</title><author>McNamara, Aimee L ; Ramos-Méndez, José ; Perl, Joseph ; Held, Kathryn ; Dominguez, Naoki ; Moreno, Eduardo ; Henthorn, Nicholas T ; Kirkby, Karen J ; Meylan, Sylvain ; Villagrasa, Carmen ; Incerti, Sebastien ; Faddegon, Bruce ; Paganetti, Harald ; Schuemann, Jan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c593t-1622bcaedf3f89e56f4ee4988a50135ec89029b882d60e06e9c31c24c6d010563</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>BASIC BIOLOGICAL SCIENCES</topic><topic>Cell Physiological Phenomena</topic><topic>Computer Simulation</topic><topic>DNA models</topic><topic>Humans</topic><topic>Macromolecular Substances - chemistry</topic><topic>MATHEMATICS AND COMPUTING</topic><topic>Monte Carlo Method</topic><topic>Monte Carlo track structure</topic><topic>neurons</topic><topic>Physics</topic><topic>radiobiology</topic><topic>Radiobiology - methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>McNamara, Aimee L</creatorcontrib><creatorcontrib>Ramos-Méndez, José</creatorcontrib><creatorcontrib>Perl, Joseph</creatorcontrib><creatorcontrib>Held, Kathryn</creatorcontrib><creatorcontrib>Dominguez, Naoki</creatorcontrib><creatorcontrib>Moreno, Eduardo</creatorcontrib><creatorcontrib>Henthorn, Nicholas T</creatorcontrib><creatorcontrib>Kirkby, Karen J</creatorcontrib><creatorcontrib>Meylan, Sylvain</creatorcontrib><creatorcontrib>Villagrasa, Carmen</creatorcontrib><creatorcontrib>Incerti, Sebastien</creatorcontrib><creatorcontrib>Faddegon, Bruce</creatorcontrib><creatorcontrib>Paganetti, Harald</creatorcontrib><creatorcontrib>Schuemann, Jan</creatorcontrib><creatorcontrib>SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States)</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Physics in medicine & biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>McNamara, Aimee L</au><au>Ramos-Méndez, José</au><au>Perl, Joseph</au><au>Held, Kathryn</au><au>Dominguez, Naoki</au><au>Moreno, Eduardo</au><au>Henthorn, Nicholas T</au><au>Kirkby, Karen J</au><au>Meylan, Sylvain</au><au>Villagrasa, Carmen</au><au>Incerti, Sebastien</au><au>Faddegon, Bruce</au><au>Paganetti, Harald</au><au>Schuemann, Jan</au><aucorp>SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Geometrical structures for radiation biology research as implemented in the TOPAS-nBio toolkit</atitle><jtitle>Physics in medicine & biology</jtitle><stitle>PMB</stitle><addtitle>Phys. Med. Biol</addtitle><date>2018-09-06</date><risdate>2018</risdate><volume>63</volume><issue>17</issue><spage>175018</spage><epage>175018</epage><pages>175018-175018</pages><issn>0031-9155</issn><issn>1361-6560</issn><eissn>1361-6560</eissn><coden>PHMBA7</coden><abstract>Computational simulations, such as Monte Carlo track structure simulations, offer a powerful tool for quantitatively investigating radiation interactions within cells. The modelling of the spatial distribution of energy deposition events as well as diffusion of chemical free radical species, within realistic biological geometries, can help provide a comprehensive understanding of the effects of radiation on cells. Track structure simulations, however, generally require advanced computing skills to implement. The TOPAS-nBio toolkit, an extension to TOPAS (TOol for PArticle Simulation), aims to provide users with a comprehensive framework for radiobiology simulations, without the need for advanced computing skills. This includes providing users with an extensive library of advanced, realistic, biological geometries ranging from the micrometer scale (e.g. cells and organelles) down to the nanometer scale (e.g. DNA molecules and proteins). Here we present the geometries available in TOPAS-nBio.</abstract><cop>England</cop><pub>IOP Publishing</pub><pmid>30088810</pmid><doi>10.1088/1361-6560/aad8eb</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0002-8106-5142</orcidid><orcidid>https://orcid.org/0000-0002-7554-8818</orcidid><orcidid>https://orcid.org/0000-0002-0901-210X</orcidid><orcidid>https://orcid.org/0000-0001-8792-0464</orcidid><orcidid>https://orcid.org/0000-0002-1738-8019</orcidid><orcidid>https://orcid.org/0000-0002-0619-2053</orcidid><orcidid>https://orcid.org/0000000187920464</orcidid><orcidid>https://orcid.org/0000000275548818</orcidid><orcidid>https://orcid.org/000000020901210X</orcidid><orcidid>https://orcid.org/0000000281065142</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0031-9155 |
ispartof | Physics in medicine & biology, 2018-09, Vol.63 (17), p.175018-175018 |
issn | 0031-9155 1361-6560 1361-6560 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_01897238v1 |
source | MEDLINE; IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link |
subjects | BASIC BIOLOGICAL SCIENCES Cell Physiological Phenomena Computer Simulation DNA models Humans Macromolecular Substances - chemistry MATHEMATICS AND COMPUTING Monte Carlo Method Monte Carlo track structure neurons Physics radiobiology Radiobiology - methods |
title | Geometrical structures for radiation biology research as implemented in the TOPAS-nBio toolkit |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T07%3A04%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Geometrical%20structures%20for%20radiation%20biology%20research%20as%20implemented%20in%20the%20TOPAS-nBio%20toolkit&rft.jtitle=Physics%20in%20medicine%20&%20biology&rft.au=McNamara,%20Aimee%20L&rft.aucorp=SLAC%20National%20Accelerator%20Laboratory%20(SLAC),%20Menlo%20Park,%20CA%20(United%20States)&rft.date=2018-09-06&rft.volume=63&rft.issue=17&rft.spage=175018&rft.epage=175018&rft.pages=175018-175018&rft.issn=0031-9155&rft.eissn=1361-6560&rft.coden=PHMBA7&rft_id=info:doi/10.1088/1361-6560/aad8eb&rft_dat=%3Cproquest_hal_p%3E2085662755%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2085662755&rft_id=info:pmid/30088810&rfr_iscdi=true |