Geometrical structures for radiation biology research as implemented in the TOPAS-nBio toolkit

Computational simulations, such as Monte Carlo track structure simulations, offer a powerful tool for quantitatively investigating radiation interactions within cells. The modelling of the spatial distribution of energy deposition events as well as diffusion of chemical free radical species, within...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physics in medicine & biology 2018-09, Vol.63 (17), p.175018-175018
Hauptverfasser: McNamara, Aimee L, Ramos-Méndez, José, Perl, Joseph, Held, Kathryn, Dominguez, Naoki, Moreno, Eduardo, Henthorn, Nicholas T, Kirkby, Karen J, Meylan, Sylvain, Villagrasa, Carmen, Incerti, Sebastien, Faddegon, Bruce, Paganetti, Harald, Schuemann, Jan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 175018
container_issue 17
container_start_page 175018
container_title Physics in medicine & biology
container_volume 63
creator McNamara, Aimee L
Ramos-Méndez, José
Perl, Joseph
Held, Kathryn
Dominguez, Naoki
Moreno, Eduardo
Henthorn, Nicholas T
Kirkby, Karen J
Meylan, Sylvain
Villagrasa, Carmen
Incerti, Sebastien
Faddegon, Bruce
Paganetti, Harald
Schuemann, Jan
description Computational simulations, such as Monte Carlo track structure simulations, offer a powerful tool for quantitatively investigating radiation interactions within cells. The modelling of the spatial distribution of energy deposition events as well as diffusion of chemical free radical species, within realistic biological geometries, can help provide a comprehensive understanding of the effects of radiation on cells. Track structure simulations, however, generally require advanced computing skills to implement. The TOPAS-nBio toolkit, an extension to TOPAS (TOol for PArticle Simulation), aims to provide users with a comprehensive framework for radiobiology simulations, without the need for advanced computing skills. This includes providing users with an extensive library of advanced, realistic, biological geometries ranging from the micrometer scale (e.g. cells and organelles) down to the nanometer scale (e.g. DNA molecules and proteins). Here we present the geometries available in TOPAS-nBio.
doi_str_mv 10.1088/1361-6560/aad8eb
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01897238v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2085662755</sourcerecordid><originalsourceid>FETCH-LOGICAL-c593t-1622bcaedf3f89e56f4ee4988a50135ec89029b882d60e06e9c31c24c6d010563</originalsourceid><addsrcrecordid>eNp9kd9r1TAUx4Mo7jp990mCTxOsy48mTV-E69BNuDDB-WpI09M1s226JB3svzeXzouKCIHAOZ_z5SQfhF5S8o4SpU4pl7SQQpJTY1oFzSO0OZQeow0hnBY1FeIIPYvxhhBKFSufoiNO8rSiZIO-n4MfIQVnzYBjCotNS4CIOx9wMK0zyfkJN84P_voe5w6YYHtsInbjPMAIU4IWuwmnHvDV5Zft12L64DxO3g8_XHqOnnRmiPDi4T5G3z59vDq7KHaX55_PtrvCipqngkrGGmug7XinahCyKwHKWikjCOUCrKoJqxulWCsJEAm15dSy0sqWUCIkP0bv19x5aUZobV4rmEHPwY0m3GtvnP6zM7leX_s7LWklpSpzwOs1wMfkdLQuge2tnyawSdOyEiVjGXqzQv1f2Rfbnd7XCFV1xbi6o5k9edgo-NsFYtKjixaGwUzgl6gZUUJKVgmRUbKiNvgYA3SHbEr03rPeS9V7qXr1nEde_f7ew8AvsRl4uwLOz_rGL2HK3_-_vJN_4PPYaMk1rfLJIpSes6Cf9cm_8g</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2085662755</pqid></control><display><type>article</type><title>Geometrical structures for radiation biology research as implemented in the TOPAS-nBio toolkit</title><source>MEDLINE</source><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>McNamara, Aimee L ; Ramos-Méndez, José ; Perl, Joseph ; Held, Kathryn ; Dominguez, Naoki ; Moreno, Eduardo ; Henthorn, Nicholas T ; Kirkby, Karen J ; Meylan, Sylvain ; Villagrasa, Carmen ; Incerti, Sebastien ; Faddegon, Bruce ; Paganetti, Harald ; Schuemann, Jan</creator><creatorcontrib>McNamara, Aimee L ; Ramos-Méndez, José ; Perl, Joseph ; Held, Kathryn ; Dominguez, Naoki ; Moreno, Eduardo ; Henthorn, Nicholas T ; Kirkby, Karen J ; Meylan, Sylvain ; Villagrasa, Carmen ; Incerti, Sebastien ; Faddegon, Bruce ; Paganetti, Harald ; Schuemann, Jan ; SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States)</creatorcontrib><description>Computational simulations, such as Monte Carlo track structure simulations, offer a powerful tool for quantitatively investigating radiation interactions within cells. The modelling of the spatial distribution of energy deposition events as well as diffusion of chemical free radical species, within realistic biological geometries, can help provide a comprehensive understanding of the effects of radiation on cells. Track structure simulations, however, generally require advanced computing skills to implement. The TOPAS-nBio toolkit, an extension to TOPAS (TOol for PArticle Simulation), aims to provide users with a comprehensive framework for radiobiology simulations, without the need for advanced computing skills. This includes providing users with an extensive library of advanced, realistic, biological geometries ranging from the micrometer scale (e.g. cells and organelles) down to the nanometer scale (e.g. DNA molecules and proteins). Here we present the geometries available in TOPAS-nBio.</description><identifier>ISSN: 0031-9155</identifier><identifier>ISSN: 1361-6560</identifier><identifier>EISSN: 1361-6560</identifier><identifier>DOI: 10.1088/1361-6560/aad8eb</identifier><identifier>PMID: 30088810</identifier><identifier>CODEN: PHMBA7</identifier><language>eng</language><publisher>England: IOP Publishing</publisher><subject>BASIC BIOLOGICAL SCIENCES ; Cell Physiological Phenomena ; Computer Simulation ; DNA models ; Humans ; Macromolecular Substances - chemistry ; MATHEMATICS AND COMPUTING ; Monte Carlo Method ; Monte Carlo track structure ; neurons ; Physics ; radiobiology ; Radiobiology - methods</subject><ispartof>Physics in medicine &amp; biology, 2018-09, Vol.63 (17), p.175018-175018</ispartof><rights>2018 Institute of Physics and Engineering in Medicine</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c593t-1622bcaedf3f89e56f4ee4988a50135ec89029b882d60e06e9c31c24c6d010563</citedby><cites>FETCH-LOGICAL-c593t-1622bcaedf3f89e56f4ee4988a50135ec89029b882d60e06e9c31c24c6d010563</cites><orcidid>0000-0002-8106-5142 ; 0000-0002-7554-8818 ; 0000-0002-0901-210X ; 0000-0001-8792-0464 ; 0000-0002-1738-8019 ; 0000-0002-0619-2053 ; 0000000187920464 ; 0000000275548818 ; 000000020901210X ; 0000000281065142</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1361-6560/aad8eb/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>230,314,780,784,885,27924,27925,53846,53893</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30088810$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-01897238$$DView record in HAL$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1475422$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>McNamara, Aimee L</creatorcontrib><creatorcontrib>Ramos-Méndez, José</creatorcontrib><creatorcontrib>Perl, Joseph</creatorcontrib><creatorcontrib>Held, Kathryn</creatorcontrib><creatorcontrib>Dominguez, Naoki</creatorcontrib><creatorcontrib>Moreno, Eduardo</creatorcontrib><creatorcontrib>Henthorn, Nicholas T</creatorcontrib><creatorcontrib>Kirkby, Karen J</creatorcontrib><creatorcontrib>Meylan, Sylvain</creatorcontrib><creatorcontrib>Villagrasa, Carmen</creatorcontrib><creatorcontrib>Incerti, Sebastien</creatorcontrib><creatorcontrib>Faddegon, Bruce</creatorcontrib><creatorcontrib>Paganetti, Harald</creatorcontrib><creatorcontrib>Schuemann, Jan</creatorcontrib><creatorcontrib>SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States)</creatorcontrib><title>Geometrical structures for radiation biology research as implemented in the TOPAS-nBio toolkit</title><title>Physics in medicine &amp; biology</title><addtitle>PMB</addtitle><addtitle>Phys. Med. Biol</addtitle><description>Computational simulations, such as Monte Carlo track structure simulations, offer a powerful tool for quantitatively investigating radiation interactions within cells. The modelling of the spatial distribution of energy deposition events as well as diffusion of chemical free radical species, within realistic biological geometries, can help provide a comprehensive understanding of the effects of radiation on cells. Track structure simulations, however, generally require advanced computing skills to implement. The TOPAS-nBio toolkit, an extension to TOPAS (TOol for PArticle Simulation), aims to provide users with a comprehensive framework for radiobiology simulations, without the need for advanced computing skills. This includes providing users with an extensive library of advanced, realistic, biological geometries ranging from the micrometer scale (e.g. cells and organelles) down to the nanometer scale (e.g. DNA molecules and proteins). Here we present the geometries available in TOPAS-nBio.</description><subject>BASIC BIOLOGICAL SCIENCES</subject><subject>Cell Physiological Phenomena</subject><subject>Computer Simulation</subject><subject>DNA models</subject><subject>Humans</subject><subject>Macromolecular Substances - chemistry</subject><subject>MATHEMATICS AND COMPUTING</subject><subject>Monte Carlo Method</subject><subject>Monte Carlo track structure</subject><subject>neurons</subject><subject>Physics</subject><subject>radiobiology</subject><subject>Radiobiology - methods</subject><issn>0031-9155</issn><issn>1361-6560</issn><issn>1361-6560</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kd9r1TAUx4Mo7jp990mCTxOsy48mTV-E69BNuDDB-WpI09M1s226JB3svzeXzouKCIHAOZ_z5SQfhF5S8o4SpU4pl7SQQpJTY1oFzSO0OZQeow0hnBY1FeIIPYvxhhBKFSufoiNO8rSiZIO-n4MfIQVnzYBjCotNS4CIOx9wMK0zyfkJN84P_voe5w6YYHtsInbjPMAIU4IWuwmnHvDV5Zft12L64DxO3g8_XHqOnnRmiPDi4T5G3z59vDq7KHaX55_PtrvCipqngkrGGmug7XinahCyKwHKWikjCOUCrKoJqxulWCsJEAm15dSy0sqWUCIkP0bv19x5aUZobV4rmEHPwY0m3GtvnP6zM7leX_s7LWklpSpzwOs1wMfkdLQuge2tnyawSdOyEiVjGXqzQv1f2Rfbnd7XCFV1xbi6o5k9edgo-NsFYtKjixaGwUzgl6gZUUJKVgmRUbKiNvgYA3SHbEr03rPeS9V7qXr1nEde_f7ew8AvsRl4uwLOz_rGL2HK3_-_vJN_4PPYaMk1rfLJIpSes6Cf9cm_8g</recordid><startdate>20180906</startdate><enddate>20180906</enddate><creator>McNamara, Aimee L</creator><creator>Ramos-Méndez, José</creator><creator>Perl, Joseph</creator><creator>Held, Kathryn</creator><creator>Dominguez, Naoki</creator><creator>Moreno, Eduardo</creator><creator>Henthorn, Nicholas T</creator><creator>Kirkby, Karen J</creator><creator>Meylan, Sylvain</creator><creator>Villagrasa, Carmen</creator><creator>Incerti, Sebastien</creator><creator>Faddegon, Bruce</creator><creator>Paganetti, Harald</creator><creator>Schuemann, Jan</creator><general>IOP Publishing</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>1XC</scope><scope>OIOZB</scope><scope>OTOTI</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-8106-5142</orcidid><orcidid>https://orcid.org/0000-0002-7554-8818</orcidid><orcidid>https://orcid.org/0000-0002-0901-210X</orcidid><orcidid>https://orcid.org/0000-0001-8792-0464</orcidid><orcidid>https://orcid.org/0000-0002-1738-8019</orcidid><orcidid>https://orcid.org/0000-0002-0619-2053</orcidid><orcidid>https://orcid.org/0000000187920464</orcidid><orcidid>https://orcid.org/0000000275548818</orcidid><orcidid>https://orcid.org/000000020901210X</orcidid><orcidid>https://orcid.org/0000000281065142</orcidid></search><sort><creationdate>20180906</creationdate><title>Geometrical structures for radiation biology research as implemented in the TOPAS-nBio toolkit</title><author>McNamara, Aimee L ; Ramos-Méndez, José ; Perl, Joseph ; Held, Kathryn ; Dominguez, Naoki ; Moreno, Eduardo ; Henthorn, Nicholas T ; Kirkby, Karen J ; Meylan, Sylvain ; Villagrasa, Carmen ; Incerti, Sebastien ; Faddegon, Bruce ; Paganetti, Harald ; Schuemann, Jan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c593t-1622bcaedf3f89e56f4ee4988a50135ec89029b882d60e06e9c31c24c6d010563</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>BASIC BIOLOGICAL SCIENCES</topic><topic>Cell Physiological Phenomena</topic><topic>Computer Simulation</topic><topic>DNA models</topic><topic>Humans</topic><topic>Macromolecular Substances - chemistry</topic><topic>MATHEMATICS AND COMPUTING</topic><topic>Monte Carlo Method</topic><topic>Monte Carlo track structure</topic><topic>neurons</topic><topic>Physics</topic><topic>radiobiology</topic><topic>Radiobiology - methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>McNamara, Aimee L</creatorcontrib><creatorcontrib>Ramos-Méndez, José</creatorcontrib><creatorcontrib>Perl, Joseph</creatorcontrib><creatorcontrib>Held, Kathryn</creatorcontrib><creatorcontrib>Dominguez, Naoki</creatorcontrib><creatorcontrib>Moreno, Eduardo</creatorcontrib><creatorcontrib>Henthorn, Nicholas T</creatorcontrib><creatorcontrib>Kirkby, Karen J</creatorcontrib><creatorcontrib>Meylan, Sylvain</creatorcontrib><creatorcontrib>Villagrasa, Carmen</creatorcontrib><creatorcontrib>Incerti, Sebastien</creatorcontrib><creatorcontrib>Faddegon, Bruce</creatorcontrib><creatorcontrib>Paganetti, Harald</creatorcontrib><creatorcontrib>Schuemann, Jan</creatorcontrib><creatorcontrib>SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States)</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Physics in medicine &amp; biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>McNamara, Aimee L</au><au>Ramos-Méndez, José</au><au>Perl, Joseph</au><au>Held, Kathryn</au><au>Dominguez, Naoki</au><au>Moreno, Eduardo</au><au>Henthorn, Nicholas T</au><au>Kirkby, Karen J</au><au>Meylan, Sylvain</au><au>Villagrasa, Carmen</au><au>Incerti, Sebastien</au><au>Faddegon, Bruce</au><au>Paganetti, Harald</au><au>Schuemann, Jan</au><aucorp>SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Geometrical structures for radiation biology research as implemented in the TOPAS-nBio toolkit</atitle><jtitle>Physics in medicine &amp; biology</jtitle><stitle>PMB</stitle><addtitle>Phys. Med. Biol</addtitle><date>2018-09-06</date><risdate>2018</risdate><volume>63</volume><issue>17</issue><spage>175018</spage><epage>175018</epage><pages>175018-175018</pages><issn>0031-9155</issn><issn>1361-6560</issn><eissn>1361-6560</eissn><coden>PHMBA7</coden><abstract>Computational simulations, such as Monte Carlo track structure simulations, offer a powerful tool for quantitatively investigating radiation interactions within cells. The modelling of the spatial distribution of energy deposition events as well as diffusion of chemical free radical species, within realistic biological geometries, can help provide a comprehensive understanding of the effects of radiation on cells. Track structure simulations, however, generally require advanced computing skills to implement. The TOPAS-nBio toolkit, an extension to TOPAS (TOol for PArticle Simulation), aims to provide users with a comprehensive framework for radiobiology simulations, without the need for advanced computing skills. This includes providing users with an extensive library of advanced, realistic, biological geometries ranging from the micrometer scale (e.g. cells and organelles) down to the nanometer scale (e.g. DNA molecules and proteins). Here we present the geometries available in TOPAS-nBio.</abstract><cop>England</cop><pub>IOP Publishing</pub><pmid>30088810</pmid><doi>10.1088/1361-6560/aad8eb</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0002-8106-5142</orcidid><orcidid>https://orcid.org/0000-0002-7554-8818</orcidid><orcidid>https://orcid.org/0000-0002-0901-210X</orcidid><orcidid>https://orcid.org/0000-0001-8792-0464</orcidid><orcidid>https://orcid.org/0000-0002-1738-8019</orcidid><orcidid>https://orcid.org/0000-0002-0619-2053</orcidid><orcidid>https://orcid.org/0000000187920464</orcidid><orcidid>https://orcid.org/0000000275548818</orcidid><orcidid>https://orcid.org/000000020901210X</orcidid><orcidid>https://orcid.org/0000000281065142</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0031-9155
ispartof Physics in medicine & biology, 2018-09, Vol.63 (17), p.175018-175018
issn 0031-9155
1361-6560
1361-6560
language eng
recordid cdi_hal_primary_oai_HAL_hal_01897238v1
source MEDLINE; IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link
subjects BASIC BIOLOGICAL SCIENCES
Cell Physiological Phenomena
Computer Simulation
DNA models
Humans
Macromolecular Substances - chemistry
MATHEMATICS AND COMPUTING
Monte Carlo Method
Monte Carlo track structure
neurons
Physics
radiobiology
Radiobiology - methods
title Geometrical structures for radiation biology research as implemented in the TOPAS-nBio toolkit
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T07%3A04%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Geometrical%20structures%20for%20radiation%20biology%20research%20as%20implemented%20in%20the%20TOPAS-nBio%20toolkit&rft.jtitle=Physics%20in%20medicine%20&%20biology&rft.au=McNamara,%20Aimee%20L&rft.aucorp=SLAC%20National%20Accelerator%20Laboratory%20(SLAC),%20Menlo%20Park,%20CA%20(United%20States)&rft.date=2018-09-06&rft.volume=63&rft.issue=17&rft.spage=175018&rft.epage=175018&rft.pages=175018-175018&rft.issn=0031-9155&rft.eissn=1361-6560&rft.coden=PHMBA7&rft_id=info:doi/10.1088/1361-6560/aad8eb&rft_dat=%3Cproquest_hal_p%3E2085662755%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2085662755&rft_id=info:pmid/30088810&rfr_iscdi=true