Performance and uncertainties of TSS stormwater sampling strategies from online time series

The event mean concentrations (EMCs) that would have been obtained by four different stormwater sampling strategies are simulated by using total suspended solids (TSS) and flowrate time series (about one minute time-step and one year of data). These EMCs are compared to the reference EMCs calculated...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Water science and technology 2018-11, Vol.78 (5-6), p.1407-1416
Hauptverfasser: Sandoval, Santiago, Bertrand-Krajewski, Jean-Luc, Caradot, Nicolas, Hofer, Thomas, Gruber, Günter
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1416
container_issue 5-6
container_start_page 1407
container_title Water science and technology
container_volume 78
creator Sandoval, Santiago
Bertrand-Krajewski, Jean-Luc
Caradot, Nicolas
Hofer, Thomas
Gruber, Günter
description The event mean concentrations (EMCs) that would have been obtained by four different stormwater sampling strategies are simulated by using total suspended solids (TSS) and flowrate time series (about one minute time-step and one year of data). These EMCs are compared to the reference EMCs calculated by considering the complete time series. The sampling strategies are assessed with datasets from four catchments: (i) Berlin, Germany, combined sewer overflow (CSO); (ii) Graz, Austria, CSO; (iii) Chassieu, France, separate sewer system; and (iv) Ecully, France, CSO. A sampling strategy in which samples are collected at constant time intervals over the rainfall event and sampling volumes are pre-set as proportional to the runoff volume discharged between two consecutive sample leads to the most representative results. Recommended sampling time intervals are of 5 min for Berlin and Chassieu (resp. 100 and 185 ha area) and 10 min for Graz and Ecully (resp. 335 and 245 ha area), with relative sampling errors between 7% and 20% and uncertainties in sampling errors of about 5%. Uncertainties related to sampling volumes, TSS laboratory analyses and beginning/ending of rainstorm events are reported as the most influent sources in the uncertainties of sampling errors and EMCs.
doi_str_mv 10.2166/wst.2018.415
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01893996v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2135714544</sourcerecordid><originalsourceid>FETCH-LOGICAL-c391t-96d08f70654fdf6bb6260311ff6a607f894716c26f45eb40c6c8e9e8eeaf72873</originalsourceid><addsrcrecordid>eNo9kM1LwzAYh4Mobk5vniXgSbAzX83HcQx1wkBh8-QhpF0yO9Z2JqnD_96U6U55eXj4ER4ArjEaE8z5wz7EMUFYjhnOT8AQK8UzJSg5BUNEBM0wIXQALkLYIIQEZegcDCiiUiIlhuDjzXrX-to0pYWmWcEuHT6aqomVDbB1cLlYwBCTsjfRehhMvdtWzToxn8C6t5xva9g2CVsYq9rCYH3il-DMmW2wV3_vCLw_PS6ns2z--vwyncyzkiocM8VXSDqBeM7cyvGi4IQjirFz3HAknFRMYF4S7lhuC4ZKXkqrrLTWOEGkoCNwd9j9NFu981Vt_I9uTaVnk7nuWaqjaOryjZN7e3B3vv3qbIh603a-Sd_TBNNcYJYzlqz7g1X6NgRv3XEWI91X16m67qvrVD3pN3-jXVHb1VH-z0x_AcyefWw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2135714544</pqid></control><display><type>article</type><title>Performance and uncertainties of TSS stormwater sampling strategies from online time series</title><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Sandoval, Santiago ; Bertrand-Krajewski, Jean-Luc ; Caradot, Nicolas ; Hofer, Thomas ; Gruber, Günter</creator><creatorcontrib>Sandoval, Santiago ; Bertrand-Krajewski, Jean-Luc ; Caradot, Nicolas ; Hofer, Thomas ; Gruber, Günter</creatorcontrib><description>The event mean concentrations (EMCs) that would have been obtained by four different stormwater sampling strategies are simulated by using total suspended solids (TSS) and flowrate time series (about one minute time-step and one year of data). These EMCs are compared to the reference EMCs calculated by considering the complete time series. The sampling strategies are assessed with datasets from four catchments: (i) Berlin, Germany, combined sewer overflow (CSO); (ii) Graz, Austria, CSO; (iii) Chassieu, France, separate sewer system; and (iv) Ecully, France, CSO. A sampling strategy in which samples are collected at constant time intervals over the rainfall event and sampling volumes are pre-set as proportional to the runoff volume discharged between two consecutive sample leads to the most representative results. Recommended sampling time intervals are of 5 min for Berlin and Chassieu (resp. 100 and 185 ha area) and 10 min for Graz and Ecully (resp. 335 and 245 ha area), with relative sampling errors between 7% and 20% and uncertainties in sampling errors of about 5%. Uncertainties related to sampling volumes, TSS laboratory analyses and beginning/ending of rainstorm events are reported as the most influent sources in the uncertainties of sampling errors and EMCs.</description><identifier>ISSN: 0273-1223</identifier><identifier>EISSN: 1996-9732</identifier><identifier>DOI: 10.2166/wst.2018.415</identifier><identifier>PMID: 30388097</identifier><language>eng</language><publisher>England: IWA Publishing</publisher><subject>Austria ; Automation ; Berlin ; Catchment area ; Catchments ; Combined sewer overflows ; Environmental Engineering ; Environmental Monitoring ; Environmental Sciences ; Errors ; Flow rates ; France ; Germany ; Influents ; Intervals ; Laboratories ; Overflow ; Pollutants ; Rain ; Rainfall ; Runoff ; Runoff volume ; Sampling ; Sampling error ; Separated sewers ; Sewer systems ; Solid suspensions ; Stormwater ; Suspended particulate matter ; Time series ; Total suspended solids ; Uncertainty ; Water conservation ; Water Movements ; Water quality ; Water Supply</subject><ispartof>Water science and technology, 2018-11, Vol.78 (5-6), p.1407-1416</ispartof><rights>Copyright IWA Publishing Sep 2018</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c391t-96d08f70654fdf6bb6260311ff6a607f894716c26f45eb40c6c8e9e8eeaf72873</citedby><cites>FETCH-LOGICAL-c391t-96d08f70654fdf6bb6260311ff6a607f894716c26f45eb40c6c8e9e8eeaf72873</cites><orcidid>0000-0003-3204-8861</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30388097$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-01893996$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Sandoval, Santiago</creatorcontrib><creatorcontrib>Bertrand-Krajewski, Jean-Luc</creatorcontrib><creatorcontrib>Caradot, Nicolas</creatorcontrib><creatorcontrib>Hofer, Thomas</creatorcontrib><creatorcontrib>Gruber, Günter</creatorcontrib><title>Performance and uncertainties of TSS stormwater sampling strategies from online time series</title><title>Water science and technology</title><addtitle>Water Sci Technol</addtitle><description>The event mean concentrations (EMCs) that would have been obtained by four different stormwater sampling strategies are simulated by using total suspended solids (TSS) and flowrate time series (about one minute time-step and one year of data). These EMCs are compared to the reference EMCs calculated by considering the complete time series. The sampling strategies are assessed with datasets from four catchments: (i) Berlin, Germany, combined sewer overflow (CSO); (ii) Graz, Austria, CSO; (iii) Chassieu, France, separate sewer system; and (iv) Ecully, France, CSO. A sampling strategy in which samples are collected at constant time intervals over the rainfall event and sampling volumes are pre-set as proportional to the runoff volume discharged between two consecutive sample leads to the most representative results. Recommended sampling time intervals are of 5 min for Berlin and Chassieu (resp. 100 and 185 ha area) and 10 min for Graz and Ecully (resp. 335 and 245 ha area), with relative sampling errors between 7% and 20% and uncertainties in sampling errors of about 5%. Uncertainties related to sampling volumes, TSS laboratory analyses and beginning/ending of rainstorm events are reported as the most influent sources in the uncertainties of sampling errors and EMCs.</description><subject>Austria</subject><subject>Automation</subject><subject>Berlin</subject><subject>Catchment area</subject><subject>Catchments</subject><subject>Combined sewer overflows</subject><subject>Environmental Engineering</subject><subject>Environmental Monitoring</subject><subject>Environmental Sciences</subject><subject>Errors</subject><subject>Flow rates</subject><subject>France</subject><subject>Germany</subject><subject>Influents</subject><subject>Intervals</subject><subject>Laboratories</subject><subject>Overflow</subject><subject>Pollutants</subject><subject>Rain</subject><subject>Rainfall</subject><subject>Runoff</subject><subject>Runoff volume</subject><subject>Sampling</subject><subject>Sampling error</subject><subject>Separated sewers</subject><subject>Sewer systems</subject><subject>Solid suspensions</subject><subject>Stormwater</subject><subject>Suspended particulate matter</subject><subject>Time series</subject><subject>Total suspended solids</subject><subject>Uncertainty</subject><subject>Water conservation</subject><subject>Water Movements</subject><subject>Water quality</subject><subject>Water Supply</subject><issn>0273-1223</issn><issn>1996-9732</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNo9kM1LwzAYh4Mobk5vniXgSbAzX83HcQx1wkBh8-QhpF0yO9Z2JqnD_96U6U55eXj4ER4ArjEaE8z5wz7EMUFYjhnOT8AQK8UzJSg5BUNEBM0wIXQALkLYIIQEZegcDCiiUiIlhuDjzXrX-to0pYWmWcEuHT6aqomVDbB1cLlYwBCTsjfRehhMvdtWzToxn8C6t5xva9g2CVsYq9rCYH3il-DMmW2wV3_vCLw_PS6ns2z--vwyncyzkiocM8VXSDqBeM7cyvGi4IQjirFz3HAknFRMYF4S7lhuC4ZKXkqrrLTWOEGkoCNwd9j9NFu981Vt_I9uTaVnk7nuWaqjaOryjZN7e3B3vv3qbIh603a-Sd_TBNNcYJYzlqz7g1X6NgRv3XEWI91X16m67qvrVD3pN3-jXVHb1VH-z0x_AcyefWw</recordid><startdate>20181101</startdate><enddate>20181101</enddate><creator>Sandoval, Santiago</creator><creator>Bertrand-Krajewski, Jean-Luc</creator><creator>Caradot, Nicolas</creator><creator>Hofer, Thomas</creator><creator>Gruber, Günter</creator><general>IWA Publishing</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QH</scope><scope>7UA</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FE</scope><scope>8FG</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>H96</scope><scope>H97</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>L.G</scope><scope>L6V</scope><scope>M0S</scope><scope>M1P</scope><scope>M7S</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0003-3204-8861</orcidid></search><sort><creationdate>20181101</creationdate><title>Performance and uncertainties of TSS stormwater sampling strategies from online time series</title><author>Sandoval, Santiago ; Bertrand-Krajewski, Jean-Luc ; Caradot, Nicolas ; Hofer, Thomas ; Gruber, Günter</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c391t-96d08f70654fdf6bb6260311ff6a607f894716c26f45eb40c6c8e9e8eeaf72873</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Austria</topic><topic>Automation</topic><topic>Berlin</topic><topic>Catchment area</topic><topic>Catchments</topic><topic>Combined sewer overflows</topic><topic>Environmental Engineering</topic><topic>Environmental Monitoring</topic><topic>Environmental Sciences</topic><topic>Errors</topic><topic>Flow rates</topic><topic>France</topic><topic>Germany</topic><topic>Influents</topic><topic>Intervals</topic><topic>Laboratories</topic><topic>Overflow</topic><topic>Pollutants</topic><topic>Rain</topic><topic>Rainfall</topic><topic>Runoff</topic><topic>Runoff volume</topic><topic>Sampling</topic><topic>Sampling error</topic><topic>Separated sewers</topic><topic>Sewer systems</topic><topic>Solid suspensions</topic><topic>Stormwater</topic><topic>Suspended particulate matter</topic><topic>Time series</topic><topic>Total suspended solids</topic><topic>Uncertainty</topic><topic>Water conservation</topic><topic>Water Movements</topic><topic>Water quality</topic><topic>Water Supply</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sandoval, Santiago</creatorcontrib><creatorcontrib>Bertrand-Krajewski, Jean-Luc</creatorcontrib><creatorcontrib>Caradot, Nicolas</creatorcontrib><creatorcontrib>Hofer, Thomas</creatorcontrib><creatorcontrib>Gruber, Günter</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aqualine</collection><collection>Water Resources Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 3: Aquatic Pollution &amp; Environmental Quality</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Engineering Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Water science and technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sandoval, Santiago</au><au>Bertrand-Krajewski, Jean-Luc</au><au>Caradot, Nicolas</au><au>Hofer, Thomas</au><au>Gruber, Günter</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Performance and uncertainties of TSS stormwater sampling strategies from online time series</atitle><jtitle>Water science and technology</jtitle><addtitle>Water Sci Technol</addtitle><date>2018-11-01</date><risdate>2018</risdate><volume>78</volume><issue>5-6</issue><spage>1407</spage><epage>1416</epage><pages>1407-1416</pages><issn>0273-1223</issn><eissn>1996-9732</eissn><abstract>The event mean concentrations (EMCs) that would have been obtained by four different stormwater sampling strategies are simulated by using total suspended solids (TSS) and flowrate time series (about one minute time-step and one year of data). These EMCs are compared to the reference EMCs calculated by considering the complete time series. The sampling strategies are assessed with datasets from four catchments: (i) Berlin, Germany, combined sewer overflow (CSO); (ii) Graz, Austria, CSO; (iii) Chassieu, France, separate sewer system; and (iv) Ecully, France, CSO. A sampling strategy in which samples are collected at constant time intervals over the rainfall event and sampling volumes are pre-set as proportional to the runoff volume discharged between two consecutive sample leads to the most representative results. Recommended sampling time intervals are of 5 min for Berlin and Chassieu (resp. 100 and 185 ha area) and 10 min for Graz and Ecully (resp. 335 and 245 ha area), with relative sampling errors between 7% and 20% and uncertainties in sampling errors of about 5%. Uncertainties related to sampling volumes, TSS laboratory analyses and beginning/ending of rainstorm events are reported as the most influent sources in the uncertainties of sampling errors and EMCs.</abstract><cop>England</cop><pub>IWA Publishing</pub><pmid>30388097</pmid><doi>10.2166/wst.2018.415</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-3204-8861</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0273-1223
ispartof Water science and technology, 2018-11, Vol.78 (5-6), p.1407-1416
issn 0273-1223
1996-9732
language eng
recordid cdi_hal_primary_oai_HAL_hal_01893996v1
source MEDLINE; EZB-FREE-00999 freely available EZB journals
subjects Austria
Automation
Berlin
Catchment area
Catchments
Combined sewer overflows
Environmental Engineering
Environmental Monitoring
Environmental Sciences
Errors
Flow rates
France
Germany
Influents
Intervals
Laboratories
Overflow
Pollutants
Rain
Rainfall
Runoff
Runoff volume
Sampling
Sampling error
Separated sewers
Sewer systems
Solid suspensions
Stormwater
Suspended particulate matter
Time series
Total suspended solids
Uncertainty
Water conservation
Water Movements
Water quality
Water Supply
title Performance and uncertainties of TSS stormwater sampling strategies from online time series
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T03%3A17%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Performance%20and%20uncertainties%20of%20TSS%20stormwater%20sampling%20strategies%20from%20online%20time%20series&rft.jtitle=Water%20science%20and%20technology&rft.au=Sandoval,%20Santiago&rft.date=2018-11-01&rft.volume=78&rft.issue=5-6&rft.spage=1407&rft.epage=1416&rft.pages=1407-1416&rft.issn=0273-1223&rft.eissn=1996-9732&rft_id=info:doi/10.2166/wst.2018.415&rft_dat=%3Cproquest_hal_p%3E2135714544%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2135714544&rft_id=info:pmid/30388097&rfr_iscdi=true