Performance and uncertainties of TSS stormwater sampling strategies from online time series
The event mean concentrations (EMCs) that would have been obtained by four different stormwater sampling strategies are simulated by using total suspended solids (TSS) and flowrate time series (about one minute time-step and one year of data). These EMCs are compared to the reference EMCs calculated...
Gespeichert in:
Veröffentlicht in: | Water science and technology 2018-11, Vol.78 (5-6), p.1407-1416 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1416 |
---|---|
container_issue | 5-6 |
container_start_page | 1407 |
container_title | Water science and technology |
container_volume | 78 |
creator | Sandoval, Santiago Bertrand-Krajewski, Jean-Luc Caradot, Nicolas Hofer, Thomas Gruber, Günter |
description | The event mean concentrations (EMCs) that would have been obtained by four different stormwater sampling strategies are simulated by using total suspended solids (TSS) and flowrate time series (about one minute time-step and one year of data). These EMCs are compared to the reference EMCs calculated by considering the complete time series. The sampling strategies are assessed with datasets from four catchments: (i) Berlin, Germany, combined sewer overflow (CSO); (ii) Graz, Austria, CSO; (iii) Chassieu, France, separate sewer system; and (iv) Ecully, France, CSO. A sampling strategy in which samples are collected at constant time intervals over the rainfall event and sampling volumes are pre-set as proportional to the runoff volume discharged between two consecutive sample leads to the most representative results. Recommended sampling time intervals are of 5 min for Berlin and Chassieu (resp. 100 and 185 ha area) and 10 min for Graz and Ecully (resp. 335 and 245 ha area), with relative sampling errors between 7% and 20% and uncertainties in sampling errors of about 5%. Uncertainties related to sampling volumes, TSS laboratory analyses and beginning/ending of rainstorm events are reported as the most influent sources in the uncertainties of sampling errors and EMCs. |
doi_str_mv | 10.2166/wst.2018.415 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01893996v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2135714544</sourcerecordid><originalsourceid>FETCH-LOGICAL-c391t-96d08f70654fdf6bb6260311ff6a607f894716c26f45eb40c6c8e9e8eeaf72873</originalsourceid><addsrcrecordid>eNo9kM1LwzAYh4Mobk5vniXgSbAzX83HcQx1wkBh8-QhpF0yO9Z2JqnD_96U6U55eXj4ER4ArjEaE8z5wz7EMUFYjhnOT8AQK8UzJSg5BUNEBM0wIXQALkLYIIQEZegcDCiiUiIlhuDjzXrX-to0pYWmWcEuHT6aqomVDbB1cLlYwBCTsjfRehhMvdtWzToxn8C6t5xva9g2CVsYq9rCYH3il-DMmW2wV3_vCLw_PS6ns2z--vwyncyzkiocM8VXSDqBeM7cyvGi4IQjirFz3HAknFRMYF4S7lhuC4ZKXkqrrLTWOEGkoCNwd9j9NFu981Vt_I9uTaVnk7nuWaqjaOryjZN7e3B3vv3qbIh603a-Sd_TBNNcYJYzlqz7g1X6NgRv3XEWI91X16m67qvrVD3pN3-jXVHb1VH-z0x_AcyefWw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2135714544</pqid></control><display><type>article</type><title>Performance and uncertainties of TSS stormwater sampling strategies from online time series</title><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Sandoval, Santiago ; Bertrand-Krajewski, Jean-Luc ; Caradot, Nicolas ; Hofer, Thomas ; Gruber, Günter</creator><creatorcontrib>Sandoval, Santiago ; Bertrand-Krajewski, Jean-Luc ; Caradot, Nicolas ; Hofer, Thomas ; Gruber, Günter</creatorcontrib><description>The event mean concentrations (EMCs) that would have been obtained by four different stormwater sampling strategies are simulated by using total suspended solids (TSS) and flowrate time series (about one minute time-step and one year of data). These EMCs are compared to the reference EMCs calculated by considering the complete time series. The sampling strategies are assessed with datasets from four catchments: (i) Berlin, Germany, combined sewer overflow (CSO); (ii) Graz, Austria, CSO; (iii) Chassieu, France, separate sewer system; and (iv) Ecully, France, CSO. A sampling strategy in which samples are collected at constant time intervals over the rainfall event and sampling volumes are pre-set as proportional to the runoff volume discharged between two consecutive sample leads to the most representative results. Recommended sampling time intervals are of 5 min for Berlin and Chassieu (resp. 100 and 185 ha area) and 10 min for Graz and Ecully (resp. 335 and 245 ha area), with relative sampling errors between 7% and 20% and uncertainties in sampling errors of about 5%. Uncertainties related to sampling volumes, TSS laboratory analyses and beginning/ending of rainstorm events are reported as the most influent sources in the uncertainties of sampling errors and EMCs.</description><identifier>ISSN: 0273-1223</identifier><identifier>EISSN: 1996-9732</identifier><identifier>DOI: 10.2166/wst.2018.415</identifier><identifier>PMID: 30388097</identifier><language>eng</language><publisher>England: IWA Publishing</publisher><subject>Austria ; Automation ; Berlin ; Catchment area ; Catchments ; Combined sewer overflows ; Environmental Engineering ; Environmental Monitoring ; Environmental Sciences ; Errors ; Flow rates ; France ; Germany ; Influents ; Intervals ; Laboratories ; Overflow ; Pollutants ; Rain ; Rainfall ; Runoff ; Runoff volume ; Sampling ; Sampling error ; Separated sewers ; Sewer systems ; Solid suspensions ; Stormwater ; Suspended particulate matter ; Time series ; Total suspended solids ; Uncertainty ; Water conservation ; Water Movements ; Water quality ; Water Supply</subject><ispartof>Water science and technology, 2018-11, Vol.78 (5-6), p.1407-1416</ispartof><rights>Copyright IWA Publishing Sep 2018</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c391t-96d08f70654fdf6bb6260311ff6a607f894716c26f45eb40c6c8e9e8eeaf72873</citedby><cites>FETCH-LOGICAL-c391t-96d08f70654fdf6bb6260311ff6a607f894716c26f45eb40c6c8e9e8eeaf72873</cites><orcidid>0000-0003-3204-8861</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30388097$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-01893996$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Sandoval, Santiago</creatorcontrib><creatorcontrib>Bertrand-Krajewski, Jean-Luc</creatorcontrib><creatorcontrib>Caradot, Nicolas</creatorcontrib><creatorcontrib>Hofer, Thomas</creatorcontrib><creatorcontrib>Gruber, Günter</creatorcontrib><title>Performance and uncertainties of TSS stormwater sampling strategies from online time series</title><title>Water science and technology</title><addtitle>Water Sci Technol</addtitle><description>The event mean concentrations (EMCs) that would have been obtained by four different stormwater sampling strategies are simulated by using total suspended solids (TSS) and flowrate time series (about one minute time-step and one year of data). These EMCs are compared to the reference EMCs calculated by considering the complete time series. The sampling strategies are assessed with datasets from four catchments: (i) Berlin, Germany, combined sewer overflow (CSO); (ii) Graz, Austria, CSO; (iii) Chassieu, France, separate sewer system; and (iv) Ecully, France, CSO. A sampling strategy in which samples are collected at constant time intervals over the rainfall event and sampling volumes are pre-set as proportional to the runoff volume discharged between two consecutive sample leads to the most representative results. Recommended sampling time intervals are of 5 min for Berlin and Chassieu (resp. 100 and 185 ha area) and 10 min for Graz and Ecully (resp. 335 and 245 ha area), with relative sampling errors between 7% and 20% and uncertainties in sampling errors of about 5%. Uncertainties related to sampling volumes, TSS laboratory analyses and beginning/ending of rainstorm events are reported as the most influent sources in the uncertainties of sampling errors and EMCs.</description><subject>Austria</subject><subject>Automation</subject><subject>Berlin</subject><subject>Catchment area</subject><subject>Catchments</subject><subject>Combined sewer overflows</subject><subject>Environmental Engineering</subject><subject>Environmental Monitoring</subject><subject>Environmental Sciences</subject><subject>Errors</subject><subject>Flow rates</subject><subject>France</subject><subject>Germany</subject><subject>Influents</subject><subject>Intervals</subject><subject>Laboratories</subject><subject>Overflow</subject><subject>Pollutants</subject><subject>Rain</subject><subject>Rainfall</subject><subject>Runoff</subject><subject>Runoff volume</subject><subject>Sampling</subject><subject>Sampling error</subject><subject>Separated sewers</subject><subject>Sewer systems</subject><subject>Solid suspensions</subject><subject>Stormwater</subject><subject>Suspended particulate matter</subject><subject>Time series</subject><subject>Total suspended solids</subject><subject>Uncertainty</subject><subject>Water conservation</subject><subject>Water Movements</subject><subject>Water quality</subject><subject>Water Supply</subject><issn>0273-1223</issn><issn>1996-9732</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNo9kM1LwzAYh4Mobk5vniXgSbAzX83HcQx1wkBh8-QhpF0yO9Z2JqnD_96U6U55eXj4ER4ArjEaE8z5wz7EMUFYjhnOT8AQK8UzJSg5BUNEBM0wIXQALkLYIIQEZegcDCiiUiIlhuDjzXrX-to0pYWmWcEuHT6aqomVDbB1cLlYwBCTsjfRehhMvdtWzToxn8C6t5xva9g2CVsYq9rCYH3il-DMmW2wV3_vCLw_PS6ns2z--vwyncyzkiocM8VXSDqBeM7cyvGi4IQjirFz3HAknFRMYF4S7lhuC4ZKXkqrrLTWOEGkoCNwd9j9NFu981Vt_I9uTaVnk7nuWaqjaOryjZN7e3B3vv3qbIh603a-Sd_TBNNcYJYzlqz7g1X6NgRv3XEWI91X16m67qvrVD3pN3-jXVHb1VH-z0x_AcyefWw</recordid><startdate>20181101</startdate><enddate>20181101</enddate><creator>Sandoval, Santiago</creator><creator>Bertrand-Krajewski, Jean-Luc</creator><creator>Caradot, Nicolas</creator><creator>Hofer, Thomas</creator><creator>Gruber, Günter</creator><general>IWA Publishing</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QH</scope><scope>7UA</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FE</scope><scope>8FG</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>H96</scope><scope>H97</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>L.G</scope><scope>L6V</scope><scope>M0S</scope><scope>M1P</scope><scope>M7S</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0003-3204-8861</orcidid></search><sort><creationdate>20181101</creationdate><title>Performance and uncertainties of TSS stormwater sampling strategies from online time series</title><author>Sandoval, Santiago ; Bertrand-Krajewski, Jean-Luc ; Caradot, Nicolas ; Hofer, Thomas ; Gruber, Günter</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c391t-96d08f70654fdf6bb6260311ff6a607f894716c26f45eb40c6c8e9e8eeaf72873</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Austria</topic><topic>Automation</topic><topic>Berlin</topic><topic>Catchment area</topic><topic>Catchments</topic><topic>Combined sewer overflows</topic><topic>Environmental Engineering</topic><topic>Environmental Monitoring</topic><topic>Environmental Sciences</topic><topic>Errors</topic><topic>Flow rates</topic><topic>France</topic><topic>Germany</topic><topic>Influents</topic><topic>Intervals</topic><topic>Laboratories</topic><topic>Overflow</topic><topic>Pollutants</topic><topic>Rain</topic><topic>Rainfall</topic><topic>Runoff</topic><topic>Runoff volume</topic><topic>Sampling</topic><topic>Sampling error</topic><topic>Separated sewers</topic><topic>Sewer systems</topic><topic>Solid suspensions</topic><topic>Stormwater</topic><topic>Suspended particulate matter</topic><topic>Time series</topic><topic>Total suspended solids</topic><topic>Uncertainty</topic><topic>Water conservation</topic><topic>Water Movements</topic><topic>Water quality</topic><topic>Water Supply</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sandoval, Santiago</creatorcontrib><creatorcontrib>Bertrand-Krajewski, Jean-Luc</creatorcontrib><creatorcontrib>Caradot, Nicolas</creatorcontrib><creatorcontrib>Hofer, Thomas</creatorcontrib><creatorcontrib>Gruber, Günter</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aqualine</collection><collection>Water Resources Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Engineering Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Water science and technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sandoval, Santiago</au><au>Bertrand-Krajewski, Jean-Luc</au><au>Caradot, Nicolas</au><au>Hofer, Thomas</au><au>Gruber, Günter</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Performance and uncertainties of TSS stormwater sampling strategies from online time series</atitle><jtitle>Water science and technology</jtitle><addtitle>Water Sci Technol</addtitle><date>2018-11-01</date><risdate>2018</risdate><volume>78</volume><issue>5-6</issue><spage>1407</spage><epage>1416</epage><pages>1407-1416</pages><issn>0273-1223</issn><eissn>1996-9732</eissn><abstract>The event mean concentrations (EMCs) that would have been obtained by four different stormwater sampling strategies are simulated by using total suspended solids (TSS) and flowrate time series (about one minute time-step and one year of data). These EMCs are compared to the reference EMCs calculated by considering the complete time series. The sampling strategies are assessed with datasets from four catchments: (i) Berlin, Germany, combined sewer overflow (CSO); (ii) Graz, Austria, CSO; (iii) Chassieu, France, separate sewer system; and (iv) Ecully, France, CSO. A sampling strategy in which samples are collected at constant time intervals over the rainfall event and sampling volumes are pre-set as proportional to the runoff volume discharged between two consecutive sample leads to the most representative results. Recommended sampling time intervals are of 5 min for Berlin and Chassieu (resp. 100 and 185 ha area) and 10 min for Graz and Ecully (resp. 335 and 245 ha area), with relative sampling errors between 7% and 20% and uncertainties in sampling errors of about 5%. Uncertainties related to sampling volumes, TSS laboratory analyses and beginning/ending of rainstorm events are reported as the most influent sources in the uncertainties of sampling errors and EMCs.</abstract><cop>England</cop><pub>IWA Publishing</pub><pmid>30388097</pmid><doi>10.2166/wst.2018.415</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-3204-8861</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0273-1223 |
ispartof | Water science and technology, 2018-11, Vol.78 (5-6), p.1407-1416 |
issn | 0273-1223 1996-9732 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_01893996v1 |
source | MEDLINE; EZB-FREE-00999 freely available EZB journals |
subjects | Austria Automation Berlin Catchment area Catchments Combined sewer overflows Environmental Engineering Environmental Monitoring Environmental Sciences Errors Flow rates France Germany Influents Intervals Laboratories Overflow Pollutants Rain Rainfall Runoff Runoff volume Sampling Sampling error Separated sewers Sewer systems Solid suspensions Stormwater Suspended particulate matter Time series Total suspended solids Uncertainty Water conservation Water Movements Water quality Water Supply |
title | Performance and uncertainties of TSS stormwater sampling strategies from online time series |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T03%3A17%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Performance%20and%20uncertainties%20of%20TSS%20stormwater%20sampling%20strategies%20from%20online%20time%20series&rft.jtitle=Water%20science%20and%20technology&rft.au=Sandoval,%20Santiago&rft.date=2018-11-01&rft.volume=78&rft.issue=5-6&rft.spage=1407&rft.epage=1416&rft.pages=1407-1416&rft.issn=0273-1223&rft.eissn=1996-9732&rft_id=info:doi/10.2166/wst.2018.415&rft_dat=%3Cproquest_hal_p%3E2135714544%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2135714544&rft_id=info:pmid/30388097&rfr_iscdi=true |