Fast full waveform inversion with source encoding and second-order optimization methods
Full waveform inversion (FWI) of 3-D data sets has recently been possible thanks to the development of high performance computing. However, FWI remains a computationally intensive task when high frequencies are injected in the inversion or more complex wave physics (viscoelastic) is accounted for. T...
Gespeichert in:
Veröffentlicht in: | Geophysical journal international 2015-02, Vol.200 (2), p.720-744 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 744 |
---|---|
container_issue | 2 |
container_start_page | 720 |
container_title | Geophysical journal international |
container_volume | 200 |
creator | Castellanos, Clara Métivier, Ludovic Operto, Stéphane Brossier, Romain Virieux, Jean |
description | Full waveform inversion (FWI) of 3-D data sets has recently been possible thanks to the development of high performance computing. However, FWI remains a computationally intensive task when high frequencies are injected in the inversion or more complex wave physics (viscoelastic) is accounted for. The highest computational cost results from the numerical solution of the wave equation for each seismic source. To reduce the computational burden, one well-known technique is to employ a random linear combination of the sources, rather that using each source independently. This technique, known as source encoding, has shown to successfully reduce the computational cost when applied to real data. Up to now, the inversion is normally carried out using gradient descent algorithms. With the idea of achieving a fast and robust frequency-domain FWI, we assess the performance of the random source encoding method when it is interfaced with second-order optimization methods (quasi-Newton l-BFGS, truncated Newton). Because of the additional seismic modelings required to compute the Newton descent direction, it is not clear beforehand if truncated Newton methods can indeed further reduce the computational cost compared to gradient algorithms. We design precise stopping criteria of iterations to fairly assess the computational cost and the speed-up provided by the source encoding method for each optimization method. We perform experiment on synthetic and real data sets. In both cases, we confirm that combining source encoding with second-order optimization methods reduces the computational cost compared to the case where source encoding is interfaced with gradient descent algorithms. For the synthetic data set, inspired from the geology of Gulf of Mexico, we show that the quasi-Newton l-BFGS algorithm requires the lowest computational cost. For the real data set application on the Valhall data, we show that the truncated Newton methods provide the most robust direction of descent. |
doi_str_mv | 10.1093/gji/ggu427 |
format | Article |
fullrecord | <record><control><sourceid>oup_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01888507v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/gji/ggu427</oup_id><sourcerecordid>10.1093/gji/ggu427</sourcerecordid><originalsourceid>FETCH-LOGICAL-a354t-4793c7027758df298f5558e8adfad32ec51a523afc2bf12b3200261b8b612553</originalsourceid><addsrcrecordid>eNp9kE1LwzAAhoMoOKcXf0EuHhTq8tmmxzGcCgMvA3cLaT66jLYZSbuhv96NikdPL7w873t4ALjH6Bmjks7qnZ_V9cBIcQEmmOY8IyzfXIIJKnmecYY21-AmpR1CmGEmJuBzqVIP3dA08KgO1oXYQt8dbEw-dPDo-y1MYYjaQtvpYHxXQ9UZmKwOnclCNDbCsO99679Vf560tt8Gk27BlVNNsne_OQXr5ct68ZatPl7fF_NVpihnfcaKkuoCkaLgwjhSCsc5F1Yo45ShxGqOFSdUOU0qh0lFCUIkx5Wockw4p1PwON5uVSP30bcqfsmgvHybr-S5Q1gIwVFxwCf2aWR1DClF6_4GGMmzPXmyJ0d7J_hhhMOw_4_7AZ3jcPU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Fast full waveform inversion with source encoding and second-order optimization methods</title><source>Access via Oxford University Press (Open Access Collection)</source><creator>Castellanos, Clara ; Métivier, Ludovic ; Operto, Stéphane ; Brossier, Romain ; Virieux, Jean</creator><creatorcontrib>Castellanos, Clara ; Métivier, Ludovic ; Operto, Stéphane ; Brossier, Romain ; Virieux, Jean</creatorcontrib><description>Full waveform inversion (FWI) of 3-D data sets has recently been possible thanks to the development of high performance computing. However, FWI remains a computationally intensive task when high frequencies are injected in the inversion or more complex wave physics (viscoelastic) is accounted for. The highest computational cost results from the numerical solution of the wave equation for each seismic source. To reduce the computational burden, one well-known technique is to employ a random linear combination of the sources, rather that using each source independently. This technique, known as source encoding, has shown to successfully reduce the computational cost when applied to real data. Up to now, the inversion is normally carried out using gradient descent algorithms. With the idea of achieving a fast and robust frequency-domain FWI, we assess the performance of the random source encoding method when it is interfaced with second-order optimization methods (quasi-Newton l-BFGS, truncated Newton). Because of the additional seismic modelings required to compute the Newton descent direction, it is not clear beforehand if truncated Newton methods can indeed further reduce the computational cost compared to gradient algorithms. We design precise stopping criteria of iterations to fairly assess the computational cost and the speed-up provided by the source encoding method for each optimization method. We perform experiment on synthetic and real data sets. In both cases, we confirm that combining source encoding with second-order optimization methods reduces the computational cost compared to the case where source encoding is interfaced with gradient descent algorithms. For the synthetic data set, inspired from the geology of Gulf of Mexico, we show that the quasi-Newton l-BFGS algorithm requires the lowest computational cost. For the real data set application on the Valhall data, we show that the truncated Newton methods provide the most robust direction of descent.</description><identifier>ISSN: 0956-540X</identifier><identifier>EISSN: 1365-246X</identifier><identifier>DOI: 10.1093/gji/ggu427</identifier><language>eng</language><publisher>Oxford University Press</publisher><subject>Computer Science ; Earth Sciences ; Geophysics ; Modeling and Simulation ; Physics ; Sciences of the Universe</subject><ispartof>Geophysical journal international, 2015-02, Vol.200 (2), p.720-744</ispartof><rights>The Authors 2014. Published by Oxford University Press on behalf of The Royal Astronomical Society. 2014</rights><rights>Attribution</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a354t-4793c7027758df298f5558e8adfad32ec51a523afc2bf12b3200261b8b612553</citedby><cites>FETCH-LOGICAL-a354t-4793c7027758df298f5558e8adfad32ec51a523afc2bf12b3200261b8b612553</cites><orcidid>0000-0002-4981-4967 ; 0000-0002-7195-8123</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,315,781,785,886,27926,27927</link.rule.ids><backlink>$$Uhttps://hal.science/hal-01888507$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Castellanos, Clara</creatorcontrib><creatorcontrib>Métivier, Ludovic</creatorcontrib><creatorcontrib>Operto, Stéphane</creatorcontrib><creatorcontrib>Brossier, Romain</creatorcontrib><creatorcontrib>Virieux, Jean</creatorcontrib><title>Fast full waveform inversion with source encoding and second-order optimization methods</title><title>Geophysical journal international</title><addtitle>Geophys. J. Int</addtitle><description>Full waveform inversion (FWI) of 3-D data sets has recently been possible thanks to the development of high performance computing. However, FWI remains a computationally intensive task when high frequencies are injected in the inversion or more complex wave physics (viscoelastic) is accounted for. The highest computational cost results from the numerical solution of the wave equation for each seismic source. To reduce the computational burden, one well-known technique is to employ a random linear combination of the sources, rather that using each source independently. This technique, known as source encoding, has shown to successfully reduce the computational cost when applied to real data. Up to now, the inversion is normally carried out using gradient descent algorithms. With the idea of achieving a fast and robust frequency-domain FWI, we assess the performance of the random source encoding method when it is interfaced with second-order optimization methods (quasi-Newton l-BFGS, truncated Newton). Because of the additional seismic modelings required to compute the Newton descent direction, it is not clear beforehand if truncated Newton methods can indeed further reduce the computational cost compared to gradient algorithms. We design precise stopping criteria of iterations to fairly assess the computational cost and the speed-up provided by the source encoding method for each optimization method. We perform experiment on synthetic and real data sets. In both cases, we confirm that combining source encoding with second-order optimization methods reduces the computational cost compared to the case where source encoding is interfaced with gradient descent algorithms. For the synthetic data set, inspired from the geology of Gulf of Mexico, we show that the quasi-Newton l-BFGS algorithm requires the lowest computational cost. For the real data set application on the Valhall data, we show that the truncated Newton methods provide the most robust direction of descent.</description><subject>Computer Science</subject><subject>Earth Sciences</subject><subject>Geophysics</subject><subject>Modeling and Simulation</subject><subject>Physics</subject><subject>Sciences of the Universe</subject><issn>0956-540X</issn><issn>1365-246X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LwzAAhoMoOKcXf0EuHhTq8tmmxzGcCgMvA3cLaT66jLYZSbuhv96NikdPL7w873t4ALjH6Bmjks7qnZ_V9cBIcQEmmOY8IyzfXIIJKnmecYY21-AmpR1CmGEmJuBzqVIP3dA08KgO1oXYQt8dbEw-dPDo-y1MYYjaQtvpYHxXQ9UZmKwOnclCNDbCsO99679Vf560tt8Gk27BlVNNsne_OQXr5ct68ZatPl7fF_NVpihnfcaKkuoCkaLgwjhSCsc5F1Yo45ShxGqOFSdUOU0qh0lFCUIkx5Wockw4p1PwON5uVSP30bcqfsmgvHybr-S5Q1gIwVFxwCf2aWR1DClF6_4GGMmzPXmyJ0d7J_hhhMOw_4_7AZ3jcPU</recordid><startdate>20150201</startdate><enddate>20150201</enddate><creator>Castellanos, Clara</creator><creator>Métivier, Ludovic</creator><creator>Operto, Stéphane</creator><creator>Brossier, Romain</creator><creator>Virieux, Jean</creator><general>Oxford University Press</general><general>Oxford University Press (OUP)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-4981-4967</orcidid><orcidid>https://orcid.org/0000-0002-7195-8123</orcidid></search><sort><creationdate>20150201</creationdate><title>Fast full waveform inversion with source encoding and second-order optimization methods</title><author>Castellanos, Clara ; Métivier, Ludovic ; Operto, Stéphane ; Brossier, Romain ; Virieux, Jean</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a354t-4793c7027758df298f5558e8adfad32ec51a523afc2bf12b3200261b8b612553</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Computer Science</topic><topic>Earth Sciences</topic><topic>Geophysics</topic><topic>Modeling and Simulation</topic><topic>Physics</topic><topic>Sciences of the Universe</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Castellanos, Clara</creatorcontrib><creatorcontrib>Métivier, Ludovic</creatorcontrib><creatorcontrib>Operto, Stéphane</creatorcontrib><creatorcontrib>Brossier, Romain</creatorcontrib><creatorcontrib>Virieux, Jean</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Geophysical journal international</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Castellanos, Clara</au><au>Métivier, Ludovic</au><au>Operto, Stéphane</au><au>Brossier, Romain</au><au>Virieux, Jean</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fast full waveform inversion with source encoding and second-order optimization methods</atitle><jtitle>Geophysical journal international</jtitle><stitle>Geophys. J. Int</stitle><date>2015-02-01</date><risdate>2015</risdate><volume>200</volume><issue>2</issue><spage>720</spage><epage>744</epage><pages>720-744</pages><issn>0956-540X</issn><eissn>1365-246X</eissn><abstract>Full waveform inversion (FWI) of 3-D data sets has recently been possible thanks to the development of high performance computing. However, FWI remains a computationally intensive task when high frequencies are injected in the inversion or more complex wave physics (viscoelastic) is accounted for. The highest computational cost results from the numerical solution of the wave equation for each seismic source. To reduce the computational burden, one well-known technique is to employ a random linear combination of the sources, rather that using each source independently. This technique, known as source encoding, has shown to successfully reduce the computational cost when applied to real data. Up to now, the inversion is normally carried out using gradient descent algorithms. With the idea of achieving a fast and robust frequency-domain FWI, we assess the performance of the random source encoding method when it is interfaced with second-order optimization methods (quasi-Newton l-BFGS, truncated Newton). Because of the additional seismic modelings required to compute the Newton descent direction, it is not clear beforehand if truncated Newton methods can indeed further reduce the computational cost compared to gradient algorithms. We design precise stopping criteria of iterations to fairly assess the computational cost and the speed-up provided by the source encoding method for each optimization method. We perform experiment on synthetic and real data sets. In both cases, we confirm that combining source encoding with second-order optimization methods reduces the computational cost compared to the case where source encoding is interfaced with gradient descent algorithms. For the synthetic data set, inspired from the geology of Gulf of Mexico, we show that the quasi-Newton l-BFGS algorithm requires the lowest computational cost. For the real data set application on the Valhall data, we show that the truncated Newton methods provide the most robust direction of descent.</abstract><pub>Oxford University Press</pub><doi>10.1093/gji/ggu427</doi><tpages>25</tpages><orcidid>https://orcid.org/0000-0002-4981-4967</orcidid><orcidid>https://orcid.org/0000-0002-7195-8123</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0956-540X |
ispartof | Geophysical journal international, 2015-02, Vol.200 (2), p.720-744 |
issn | 0956-540X 1365-246X |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_01888507v1 |
source | Access via Oxford University Press (Open Access Collection) |
subjects | Computer Science Earth Sciences Geophysics Modeling and Simulation Physics Sciences of the Universe |
title | Fast full waveform inversion with source encoding and second-order optimization methods |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T08%3A01%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-oup_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fast%20full%20waveform%20inversion%20with%20source%20encoding%20and%20second-order%20optimization%20methods&rft.jtitle=Geophysical%20journal%20international&rft.au=Castellanos,%20Clara&rft.date=2015-02-01&rft.volume=200&rft.issue=2&rft.spage=720&rft.epage=744&rft.pages=720-744&rft.issn=0956-540X&rft.eissn=1365-246X&rft_id=info:doi/10.1093/gji/ggu427&rft_dat=%3Coup_hal_p%3E10.1093/gji/ggu427%3C/oup_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_oup_id=10.1093/gji/ggu427&rfr_iscdi=true |