Fast full waveform inversion with source encoding and second-order optimization methods

Full waveform inversion (FWI) of 3-D data sets has recently been possible thanks to the development of high performance computing. However, FWI remains a computationally intensive task when high frequencies are injected in the inversion or more complex wave physics (viscoelastic) is accounted for. T...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Geophysical journal international 2015-02, Vol.200 (2), p.720-744
Hauptverfasser: Castellanos, Clara, Métivier, Ludovic, Operto, Stéphane, Brossier, Romain, Virieux, Jean
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 744
container_issue 2
container_start_page 720
container_title Geophysical journal international
container_volume 200
creator Castellanos, Clara
Métivier, Ludovic
Operto, Stéphane
Brossier, Romain
Virieux, Jean
description Full waveform inversion (FWI) of 3-D data sets has recently been possible thanks to the development of high performance computing. However, FWI remains a computationally intensive task when high frequencies are injected in the inversion or more complex wave physics (viscoelastic) is accounted for. The highest computational cost results from the numerical solution of the wave equation for each seismic source. To reduce the computational burden, one well-known technique is to employ a random linear combination of the sources, rather that using each source independently. This technique, known as source encoding, has shown to successfully reduce the computational cost when applied to real data. Up to now, the inversion is normally carried out using gradient descent algorithms. With the idea of achieving a fast and robust frequency-domain FWI, we assess the performance of the random source encoding method when it is interfaced with second-order optimization methods (quasi-Newton l-BFGS, truncated Newton). Because of the additional seismic modelings required to compute the Newton descent direction, it is not clear beforehand if truncated Newton methods can indeed further reduce the computational cost compared to gradient algorithms. We design precise stopping criteria of iterations to fairly assess the computational cost and the speed-up provided by the source encoding method for each optimization method. We perform experiment on synthetic and real data sets. In both cases, we confirm that combining source encoding with second-order optimization methods reduces the computational cost compared to the case where source encoding is interfaced with gradient descent algorithms. For the synthetic data set, inspired from the geology of Gulf of Mexico, we show that the quasi-Newton l-BFGS algorithm requires the lowest computational cost. For the real data set application on the Valhall data, we show that the truncated Newton methods provide the most robust direction of descent.
doi_str_mv 10.1093/gji/ggu427
format Article
fullrecord <record><control><sourceid>oup_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01888507v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/gji/ggu427</oup_id><sourcerecordid>10.1093/gji/ggu427</sourcerecordid><originalsourceid>FETCH-LOGICAL-a354t-4793c7027758df298f5558e8adfad32ec51a523afc2bf12b3200261b8b612553</originalsourceid><addsrcrecordid>eNp9kE1LwzAAhoMoOKcXf0EuHhTq8tmmxzGcCgMvA3cLaT66jLYZSbuhv96NikdPL7w873t4ALjH6Bmjks7qnZ_V9cBIcQEmmOY8IyzfXIIJKnmecYY21-AmpR1CmGEmJuBzqVIP3dA08KgO1oXYQt8dbEw-dPDo-y1MYYjaQtvpYHxXQ9UZmKwOnclCNDbCsO99679Vf560tt8Gk27BlVNNsne_OQXr5ct68ZatPl7fF_NVpihnfcaKkuoCkaLgwjhSCsc5F1Yo45ShxGqOFSdUOU0qh0lFCUIkx5Wockw4p1PwON5uVSP30bcqfsmgvHybr-S5Q1gIwVFxwCf2aWR1DClF6_4GGMmzPXmyJ0d7J_hhhMOw_4_7AZ3jcPU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Fast full waveform inversion with source encoding and second-order optimization methods</title><source>Access via Oxford University Press (Open Access Collection)</source><creator>Castellanos, Clara ; Métivier, Ludovic ; Operto, Stéphane ; Brossier, Romain ; Virieux, Jean</creator><creatorcontrib>Castellanos, Clara ; Métivier, Ludovic ; Operto, Stéphane ; Brossier, Romain ; Virieux, Jean</creatorcontrib><description>Full waveform inversion (FWI) of 3-D data sets has recently been possible thanks to the development of high performance computing. However, FWI remains a computationally intensive task when high frequencies are injected in the inversion or more complex wave physics (viscoelastic) is accounted for. The highest computational cost results from the numerical solution of the wave equation for each seismic source. To reduce the computational burden, one well-known technique is to employ a random linear combination of the sources, rather that using each source independently. This technique, known as source encoding, has shown to successfully reduce the computational cost when applied to real data. Up to now, the inversion is normally carried out using gradient descent algorithms. With the idea of achieving a fast and robust frequency-domain FWI, we assess the performance of the random source encoding method when it is interfaced with second-order optimization methods (quasi-Newton l-BFGS, truncated Newton). Because of the additional seismic modelings required to compute the Newton descent direction, it is not clear beforehand if truncated Newton methods can indeed further reduce the computational cost compared to gradient algorithms. We design precise stopping criteria of iterations to fairly assess the computational cost and the speed-up provided by the source encoding method for each optimization method. We perform experiment on synthetic and real data sets. In both cases, we confirm that combining source encoding with second-order optimization methods reduces the computational cost compared to the case where source encoding is interfaced with gradient descent algorithms. For the synthetic data set, inspired from the geology of Gulf of Mexico, we show that the quasi-Newton l-BFGS algorithm requires the lowest computational cost. For the real data set application on the Valhall data, we show that the truncated Newton methods provide the most robust direction of descent.</description><identifier>ISSN: 0956-540X</identifier><identifier>EISSN: 1365-246X</identifier><identifier>DOI: 10.1093/gji/ggu427</identifier><language>eng</language><publisher>Oxford University Press</publisher><subject>Computer Science ; Earth Sciences ; Geophysics ; Modeling and Simulation ; Physics ; Sciences of the Universe</subject><ispartof>Geophysical journal international, 2015-02, Vol.200 (2), p.720-744</ispartof><rights>The Authors 2014. Published by Oxford University Press on behalf of The Royal Astronomical Society. 2014</rights><rights>Attribution</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a354t-4793c7027758df298f5558e8adfad32ec51a523afc2bf12b3200261b8b612553</citedby><cites>FETCH-LOGICAL-a354t-4793c7027758df298f5558e8adfad32ec51a523afc2bf12b3200261b8b612553</cites><orcidid>0000-0002-4981-4967 ; 0000-0002-7195-8123</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,315,781,785,886,27926,27927</link.rule.ids><backlink>$$Uhttps://hal.science/hal-01888507$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Castellanos, Clara</creatorcontrib><creatorcontrib>Métivier, Ludovic</creatorcontrib><creatorcontrib>Operto, Stéphane</creatorcontrib><creatorcontrib>Brossier, Romain</creatorcontrib><creatorcontrib>Virieux, Jean</creatorcontrib><title>Fast full waveform inversion with source encoding and second-order optimization methods</title><title>Geophysical journal international</title><addtitle>Geophys. J. Int</addtitle><description>Full waveform inversion (FWI) of 3-D data sets has recently been possible thanks to the development of high performance computing. However, FWI remains a computationally intensive task when high frequencies are injected in the inversion or more complex wave physics (viscoelastic) is accounted for. The highest computational cost results from the numerical solution of the wave equation for each seismic source. To reduce the computational burden, one well-known technique is to employ a random linear combination of the sources, rather that using each source independently. This technique, known as source encoding, has shown to successfully reduce the computational cost when applied to real data. Up to now, the inversion is normally carried out using gradient descent algorithms. With the idea of achieving a fast and robust frequency-domain FWI, we assess the performance of the random source encoding method when it is interfaced with second-order optimization methods (quasi-Newton l-BFGS, truncated Newton). Because of the additional seismic modelings required to compute the Newton descent direction, it is not clear beforehand if truncated Newton methods can indeed further reduce the computational cost compared to gradient algorithms. We design precise stopping criteria of iterations to fairly assess the computational cost and the speed-up provided by the source encoding method for each optimization method. We perform experiment on synthetic and real data sets. In both cases, we confirm that combining source encoding with second-order optimization methods reduces the computational cost compared to the case where source encoding is interfaced with gradient descent algorithms. For the synthetic data set, inspired from the geology of Gulf of Mexico, we show that the quasi-Newton l-BFGS algorithm requires the lowest computational cost. For the real data set application on the Valhall data, we show that the truncated Newton methods provide the most robust direction of descent.</description><subject>Computer Science</subject><subject>Earth Sciences</subject><subject>Geophysics</subject><subject>Modeling and Simulation</subject><subject>Physics</subject><subject>Sciences of the Universe</subject><issn>0956-540X</issn><issn>1365-246X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LwzAAhoMoOKcXf0EuHhTq8tmmxzGcCgMvA3cLaT66jLYZSbuhv96NikdPL7w873t4ALjH6Bmjks7qnZ_V9cBIcQEmmOY8IyzfXIIJKnmecYY21-AmpR1CmGEmJuBzqVIP3dA08KgO1oXYQt8dbEw-dPDo-y1MYYjaQtvpYHxXQ9UZmKwOnclCNDbCsO99679Vf560tt8Gk27BlVNNsne_OQXr5ct68ZatPl7fF_NVpihnfcaKkuoCkaLgwjhSCsc5F1Yo45ShxGqOFSdUOU0qh0lFCUIkx5Wockw4p1PwON5uVSP30bcqfsmgvHybr-S5Q1gIwVFxwCf2aWR1DClF6_4GGMmzPXmyJ0d7J_hhhMOw_4_7AZ3jcPU</recordid><startdate>20150201</startdate><enddate>20150201</enddate><creator>Castellanos, Clara</creator><creator>Métivier, Ludovic</creator><creator>Operto, Stéphane</creator><creator>Brossier, Romain</creator><creator>Virieux, Jean</creator><general>Oxford University Press</general><general>Oxford University Press (OUP)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-4981-4967</orcidid><orcidid>https://orcid.org/0000-0002-7195-8123</orcidid></search><sort><creationdate>20150201</creationdate><title>Fast full waveform inversion with source encoding and second-order optimization methods</title><author>Castellanos, Clara ; Métivier, Ludovic ; Operto, Stéphane ; Brossier, Romain ; Virieux, Jean</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a354t-4793c7027758df298f5558e8adfad32ec51a523afc2bf12b3200261b8b612553</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Computer Science</topic><topic>Earth Sciences</topic><topic>Geophysics</topic><topic>Modeling and Simulation</topic><topic>Physics</topic><topic>Sciences of the Universe</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Castellanos, Clara</creatorcontrib><creatorcontrib>Métivier, Ludovic</creatorcontrib><creatorcontrib>Operto, Stéphane</creatorcontrib><creatorcontrib>Brossier, Romain</creatorcontrib><creatorcontrib>Virieux, Jean</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Geophysical journal international</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Castellanos, Clara</au><au>Métivier, Ludovic</au><au>Operto, Stéphane</au><au>Brossier, Romain</au><au>Virieux, Jean</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fast full waveform inversion with source encoding and second-order optimization methods</atitle><jtitle>Geophysical journal international</jtitle><stitle>Geophys. J. Int</stitle><date>2015-02-01</date><risdate>2015</risdate><volume>200</volume><issue>2</issue><spage>720</spage><epage>744</epage><pages>720-744</pages><issn>0956-540X</issn><eissn>1365-246X</eissn><abstract>Full waveform inversion (FWI) of 3-D data sets has recently been possible thanks to the development of high performance computing. However, FWI remains a computationally intensive task when high frequencies are injected in the inversion or more complex wave physics (viscoelastic) is accounted for. The highest computational cost results from the numerical solution of the wave equation for each seismic source. To reduce the computational burden, one well-known technique is to employ a random linear combination of the sources, rather that using each source independently. This technique, known as source encoding, has shown to successfully reduce the computational cost when applied to real data. Up to now, the inversion is normally carried out using gradient descent algorithms. With the idea of achieving a fast and robust frequency-domain FWI, we assess the performance of the random source encoding method when it is interfaced with second-order optimization methods (quasi-Newton l-BFGS, truncated Newton). Because of the additional seismic modelings required to compute the Newton descent direction, it is not clear beforehand if truncated Newton methods can indeed further reduce the computational cost compared to gradient algorithms. We design precise stopping criteria of iterations to fairly assess the computational cost and the speed-up provided by the source encoding method for each optimization method. We perform experiment on synthetic and real data sets. In both cases, we confirm that combining source encoding with second-order optimization methods reduces the computational cost compared to the case where source encoding is interfaced with gradient descent algorithms. For the synthetic data set, inspired from the geology of Gulf of Mexico, we show that the quasi-Newton l-BFGS algorithm requires the lowest computational cost. For the real data set application on the Valhall data, we show that the truncated Newton methods provide the most robust direction of descent.</abstract><pub>Oxford University Press</pub><doi>10.1093/gji/ggu427</doi><tpages>25</tpages><orcidid>https://orcid.org/0000-0002-4981-4967</orcidid><orcidid>https://orcid.org/0000-0002-7195-8123</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0956-540X
ispartof Geophysical journal international, 2015-02, Vol.200 (2), p.720-744
issn 0956-540X
1365-246X
language eng
recordid cdi_hal_primary_oai_HAL_hal_01888507v1
source Access via Oxford University Press (Open Access Collection)
subjects Computer Science
Earth Sciences
Geophysics
Modeling and Simulation
Physics
Sciences of the Universe
title Fast full waveform inversion with source encoding and second-order optimization methods
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T08%3A01%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-oup_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fast%20full%20waveform%20inversion%20with%20source%20encoding%20and%20second-order%20optimization%20methods&rft.jtitle=Geophysical%20journal%20international&rft.au=Castellanos,%20Clara&rft.date=2015-02-01&rft.volume=200&rft.issue=2&rft.spage=720&rft.epage=744&rft.pages=720-744&rft.issn=0956-540X&rft.eissn=1365-246X&rft_id=info:doi/10.1093/gji/ggu427&rft_dat=%3Coup_hal_p%3E10.1093/gji/ggu427%3C/oup_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_oup_id=10.1093/gji/ggu427&rfr_iscdi=true