Model selection for degradation modeling and prognosis with health monitoring data
•Overview of Lévy processes for degradation modeling and RUL prediction.•Survey of classic criteria and prognostic criteria for model selection.•Introduction of a new hybrid criterion for model selection.•Discussion of performances and limits of criteria through numerical examples. Health monitoring...
Gespeichert in:
Veröffentlicht in: | Reliability engineering & system safety 2018-01, Vol.169, p.105-116 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 116 |
---|---|
container_issue | |
container_start_page | 105 |
container_title | Reliability engineering & system safety |
container_volume | 169 |
creator | Nguyen, Khanh T.P. Fouladirad, Mitra Grall, Antoine |
description | •Overview of Lévy processes for degradation modeling and RUL prediction.•Survey of classic criteria and prognostic criteria for model selection.•Introduction of a new hybrid criterion for model selection.•Discussion of performances and limits of criteria through numerical examples.
Health monitoring data are increasingly collected and widely used for reliability assessment and lifetime prediction. They not only provide information about degradation state but also could trace failure mechanisms of assets. The selection of a deterioration model that optimally fits in with health monitoring data is an important issue. It can enable a more precise asset health prognostic and help reducing operation and maintenance costs. Therefore, this paper aims to address the problem of degradation model selection including goals, procedure and evaluation criteria. Focusing on continuous degradation modeling including some currently used Lévy processes, the performance of classical and prognostic criteria are discussed through numerous numerical examples. We also investigate in what circumstances which methods perform better than others. The efficiency of a new hybrid criterion is highlighted that allows to take into account the information of goodness-of-fit of observation data when evaluating prognostic measure. |
doi_str_mv | 10.1016/j.ress.2017.08.004 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01886819v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0951832017302612</els_id><sourcerecordid>1977215699</sourcerecordid><originalsourceid>FETCH-LOGICAL-c406t-1dd71674fefd939d7d56548ccec1f6665a299a3601b0b0d6f423c28eadf55ffa3</originalsourceid><addsrcrecordid>eNp9kEtLAzEQx4MoWB9fwNOCJw-7TvaRB3gpRa1QEUTPIc2jzbLd1GRb8dubteLR0zCT33_I_BC6wlBgwOS2LYKJsSgB0wJYAVAfoQlmlOfAKnKMJsAbnLOqhFN0FmMLieANnaDXZ69Nl0XTGTU432fWh0ybVZBa_vSb8d31q0z2OtsGv-p9dDH7dMM6WxvZpbLxvRt8GKEUkhfoxMoumsvfeo7eH-7fZvN88fL4NJsuclUDGXKsNcWE1tZYzSuuqW5IUzOljMKWENLIknNZEcBLWIImti4rVTIjtW0aa2V1jm4Oe9eyE9vgNjJ8CS-dmE8XYpwBZowwzPc4sdcHNl3wsTNxEK3fhT59T2BOaYkbwnmiygOlgo8xGPu3FoMYPYtWjJ7F6FkAE8liCt0dQibduncmiKic6ZXRLiSnQnv3X_wbBG-G-w</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1977215699</pqid></control><display><type>article</type><title>Model selection for degradation modeling and prognosis with health monitoring data</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Nguyen, Khanh T.P. ; Fouladirad, Mitra ; Grall, Antoine</creator><creatorcontrib>Nguyen, Khanh T.P. ; Fouladirad, Mitra ; Grall, Antoine</creatorcontrib><description>•Overview of Lévy processes for degradation modeling and RUL prediction.•Survey of classic criteria and prognostic criteria for model selection.•Introduction of a new hybrid criterion for model selection.•Discussion of performances and limits of criteria through numerical examples.
Health monitoring data are increasingly collected and widely used for reliability assessment and lifetime prediction. They not only provide information about degradation state but also could trace failure mechanisms of assets. The selection of a deterioration model that optimally fits in with health monitoring data is an important issue. It can enable a more precise asset health prognostic and help reducing operation and maintenance costs. Therefore, this paper aims to address the problem of degradation model selection including goals, procedure and evaluation criteria. Focusing on continuous degradation modeling including some currently used Lévy processes, the performance of classical and prognostic criteria are discussed through numerous numerical examples. We also investigate in what circumstances which methods perform better than others. The efficiency of a new hybrid criterion is highlighted that allows to take into account the information of goodness-of-fit of observation data when evaluating prognostic measure.</description><identifier>ISSN: 0951-8320</identifier><identifier>EISSN: 1879-0836</identifier><identifier>DOI: 10.1016/j.ress.2017.08.004</identifier><language>eng</language><publisher>Barking: Elsevier Ltd</publisher><subject>Assets ; Computer Science ; Criteria ; Degradation ; Degradation process ; Failure ; Failure mechanisms ; Goodness of fit ; Health ; Lévy process ; Maintenance costs ; Mathematical models ; Model selection ; Modeling and Simulation ; Prognostic prediction ; Reliability ; Reliability analysis ; Reliability engineering ; Residual life prediction</subject><ispartof>Reliability engineering & system safety, 2018-01, Vol.169, p.105-116</ispartof><rights>2017 Elsevier Ltd</rights><rights>Copyright Elsevier BV Jan 2018</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c406t-1dd71674fefd939d7d56548ccec1f6665a299a3601b0b0d6f423c28eadf55ffa3</citedby><cites>FETCH-LOGICAL-c406t-1dd71674fefd939d7d56548ccec1f6665a299a3601b0b0d6f423c28eadf55ffa3</cites><orcidid>0000-0002-0482-5347 ; 0000-0002-6900-7951</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ress.2017.08.004$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3550,4024,27923,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://hal.science/hal-01886819$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Nguyen, Khanh T.P.</creatorcontrib><creatorcontrib>Fouladirad, Mitra</creatorcontrib><creatorcontrib>Grall, Antoine</creatorcontrib><title>Model selection for degradation modeling and prognosis with health monitoring data</title><title>Reliability engineering & system safety</title><description>•Overview of Lévy processes for degradation modeling and RUL prediction.•Survey of classic criteria and prognostic criteria for model selection.•Introduction of a new hybrid criterion for model selection.•Discussion of performances and limits of criteria through numerical examples.
Health monitoring data are increasingly collected and widely used for reliability assessment and lifetime prediction. They not only provide information about degradation state but also could trace failure mechanisms of assets. The selection of a deterioration model that optimally fits in with health monitoring data is an important issue. It can enable a more precise asset health prognostic and help reducing operation and maintenance costs. Therefore, this paper aims to address the problem of degradation model selection including goals, procedure and evaluation criteria. Focusing on continuous degradation modeling including some currently used Lévy processes, the performance of classical and prognostic criteria are discussed through numerous numerical examples. We also investigate in what circumstances which methods perform better than others. The efficiency of a new hybrid criterion is highlighted that allows to take into account the information of goodness-of-fit of observation data when evaluating prognostic measure.</description><subject>Assets</subject><subject>Computer Science</subject><subject>Criteria</subject><subject>Degradation</subject><subject>Degradation process</subject><subject>Failure</subject><subject>Failure mechanisms</subject><subject>Goodness of fit</subject><subject>Health</subject><subject>Lévy process</subject><subject>Maintenance costs</subject><subject>Mathematical models</subject><subject>Model selection</subject><subject>Modeling and Simulation</subject><subject>Prognostic prediction</subject><subject>Reliability</subject><subject>Reliability analysis</subject><subject>Reliability engineering</subject><subject>Residual life prediction</subject><issn>0951-8320</issn><issn>1879-0836</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLAzEQx4MoWB9fwNOCJw-7TvaRB3gpRa1QEUTPIc2jzbLd1GRb8dubteLR0zCT33_I_BC6wlBgwOS2LYKJsSgB0wJYAVAfoQlmlOfAKnKMJsAbnLOqhFN0FmMLieANnaDXZ69Nl0XTGTU432fWh0ybVZBa_vSb8d31q0z2OtsGv-p9dDH7dMM6WxvZpbLxvRt8GKEUkhfoxMoumsvfeo7eH-7fZvN88fL4NJsuclUDGXKsNcWE1tZYzSuuqW5IUzOljMKWENLIknNZEcBLWIImti4rVTIjtW0aa2V1jm4Oe9eyE9vgNjJ8CS-dmE8XYpwBZowwzPc4sdcHNl3wsTNxEK3fhT59T2BOaYkbwnmiygOlgo8xGPu3FoMYPYtWjJ7F6FkAE8liCt0dQibduncmiKic6ZXRLiSnQnv3X_wbBG-G-w</recordid><startdate>201801</startdate><enddate>201801</enddate><creator>Nguyen, Khanh T.P.</creator><creator>Fouladirad, Mitra</creator><creator>Grall, Antoine</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>7TB</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>SOI</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-0482-5347</orcidid><orcidid>https://orcid.org/0000-0002-6900-7951</orcidid></search><sort><creationdate>201801</creationdate><title>Model selection for degradation modeling and prognosis with health monitoring data</title><author>Nguyen, Khanh T.P. ; Fouladirad, Mitra ; Grall, Antoine</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c406t-1dd71674fefd939d7d56548ccec1f6665a299a3601b0b0d6f423c28eadf55ffa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Assets</topic><topic>Computer Science</topic><topic>Criteria</topic><topic>Degradation</topic><topic>Degradation process</topic><topic>Failure</topic><topic>Failure mechanisms</topic><topic>Goodness of fit</topic><topic>Health</topic><topic>Lévy process</topic><topic>Maintenance costs</topic><topic>Mathematical models</topic><topic>Model selection</topic><topic>Modeling and Simulation</topic><topic>Prognostic prediction</topic><topic>Reliability</topic><topic>Reliability analysis</topic><topic>Reliability engineering</topic><topic>Residual life prediction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nguyen, Khanh T.P.</creatorcontrib><creatorcontrib>Fouladirad, Mitra</creatorcontrib><creatorcontrib>Grall, Antoine</creatorcontrib><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Environment Abstracts</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Reliability engineering & system safety</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nguyen, Khanh T.P.</au><au>Fouladirad, Mitra</au><au>Grall, Antoine</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Model selection for degradation modeling and prognosis with health monitoring data</atitle><jtitle>Reliability engineering & system safety</jtitle><date>2018-01</date><risdate>2018</risdate><volume>169</volume><spage>105</spage><epage>116</epage><pages>105-116</pages><issn>0951-8320</issn><eissn>1879-0836</eissn><abstract>•Overview of Lévy processes for degradation modeling and RUL prediction.•Survey of classic criteria and prognostic criteria for model selection.•Introduction of a new hybrid criterion for model selection.•Discussion of performances and limits of criteria through numerical examples.
Health monitoring data are increasingly collected and widely used for reliability assessment and lifetime prediction. They not only provide information about degradation state but also could trace failure mechanisms of assets. The selection of a deterioration model that optimally fits in with health monitoring data is an important issue. It can enable a more precise asset health prognostic and help reducing operation and maintenance costs. Therefore, this paper aims to address the problem of degradation model selection including goals, procedure and evaluation criteria. Focusing on continuous degradation modeling including some currently used Lévy processes, the performance of classical and prognostic criteria are discussed through numerous numerical examples. We also investigate in what circumstances which methods perform better than others. The efficiency of a new hybrid criterion is highlighted that allows to take into account the information of goodness-of-fit of observation data when evaluating prognostic measure.</abstract><cop>Barking</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.ress.2017.08.004</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-0482-5347</orcidid><orcidid>https://orcid.org/0000-0002-6900-7951</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0951-8320 |
ispartof | Reliability engineering & system safety, 2018-01, Vol.169, p.105-116 |
issn | 0951-8320 1879-0836 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_01886819v1 |
source | ScienceDirect Journals (5 years ago - present) |
subjects | Assets Computer Science Criteria Degradation Degradation process Failure Failure mechanisms Goodness of fit Health Lévy process Maintenance costs Mathematical models Model selection Modeling and Simulation Prognostic prediction Reliability Reliability analysis Reliability engineering Residual life prediction |
title | Model selection for degradation modeling and prognosis with health monitoring data |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T05%3A18%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Model%20selection%20for%20degradation%20modeling%20and%20prognosis%20with%20health%20monitoring%20data&rft.jtitle=Reliability%20engineering%20&%20system%20safety&rft.au=Nguyen,%20Khanh%20T.P.&rft.date=2018-01&rft.volume=169&rft.spage=105&rft.epage=116&rft.pages=105-116&rft.issn=0951-8320&rft.eissn=1879-0836&rft_id=info:doi/10.1016/j.ress.2017.08.004&rft_dat=%3Cproquest_hal_p%3E1977215699%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1977215699&rft_id=info:pmid/&rft_els_id=S0951832017302612&rfr_iscdi=true |