Chromatin-Bound MDM2 Regulates Serine Metabolism and Redox Homeostasis Independently of p53
The mouse double minute 2 (MDM2) oncoprotein is recognized as a major negative regulator of the p53 tumor suppressor, but growing evidence indicates that its oncogenic activities extend beyond p53. Here, we show that MDM2 is recruited to chromatin independently of p53 to regulate a transcriptional p...
Gespeichert in:
Veröffentlicht in: | Molecular cell 2016-06, Vol.62 (6), p.890-902 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 902 |
---|---|
container_issue | 6 |
container_start_page | 890 |
container_title | Molecular cell |
container_volume | 62 |
creator | Riscal, Romain Schrepfer, Emilie Arena, Giuseppe Cissé, Madi Y. Bellvert, Floriant Heuillet, Maud Rambow, Florian Bonneil, Eric Sabourdy, Frédérique Vincent, Charles Ait-Arsa, Imade Levade, Thierry Thibaut, Pierre Marine, Jean-Christophe Portais, Jean-Charles Sarry, Jean-Emmanuel Le Cam, Laurent Linares, Laetitia K. |
description | The mouse double minute 2 (MDM2) oncoprotein is recognized as a major negative regulator of the p53 tumor suppressor, but growing evidence indicates that its oncogenic activities extend beyond p53. Here, we show that MDM2 is recruited to chromatin independently of p53 to regulate a transcriptional program implicated in amino acid metabolism and redox homeostasis. Identification of MDM2 target genes at the whole-genome level highlights an important role for ATF3/4 transcription factors in tethering MDM2 to chromatin. MDM2 recruitment to chromatin is a tightly regulated process that occurs during oxidative stress and serine/glycine deprivation and is modulated by the pyruvate kinase M2 (PKM2) metabolic enzyme. Depletion of endogenous MDM2 in p53-deficient cells impairs serine/glycine metabolism, the NAD+/NADH ratio, and glutathione (GSH) recycling, impacting their redox state and tumorigenic potential. Collectively, our data illustrate a previously unsuspected function of chromatin-bound MDM2 in cancer cell metabolism.
[Display omitted]
•MDM2 is recruited to chromatin independently of p53•Chromatin-bound MDM2 regulates amino acid metabolism and redox homeostasis•PKM2 modulates MDM2 phosphorylation and its recruitment to chromatin•Metabolic functions of MDM2 contribute to cancer cell proliferation
Riscal et al. show that the proto-oncogene MDM2 is recruited to chromatin through direct binding to ATF4 but independently of its well-known partner, p53. Chromatin-bound MDM2 regulates a transcriptional program involved in amino acid metabolism and redox homeostasis that contributes to cancer cell proliferation and tumor growth. |
doi_str_mv | 10.1016/j.molcel.2016.04.033 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01886397v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1097276516301095</els_id><sourcerecordid>1811896591</sourcerecordid><originalsourceid>FETCH-LOGICAL-c541t-56541ecbe1c95924c831471e760da56872facfdc7c6b0fb415bbb0b63f22a1053</originalsourceid><addsrcrecordid>eNqNkUtv1DAQgC0Eog_4Bwj5CIeknsSP-IJUFspW2lWlAicOluNMqFdJvMRJRf89XmXpseplZmx947HmI-QdsBwYyItd3ofOYZcX6ZQznrOyfEFOgWmVcZD85bEulBQn5CzGHWPARaVfk5NCFZJXUp-SX6u7MfR28kP2OcxDQ7dftgW9xd9zZyeM9DuOfkC6xcnWofOxpzZBt9iEv3QdegxxstFHej00uMcUhql7oKGle1G-Ia9a20V8e8zn5OfV1x-rdba5-Xa9utxkTnCYMiFTQlcjOC10wV1VAleASrLGClmporWubZxysmZtzUHUdc1qWbZFYYGJ8px8XN69s53Zj76344MJ1pv15cYc7hhUlSy1uofEfljY_Rj-zBgn0_uYttjZAcMcDVQAlZZCPwNVWlVSacESyhfUjSHGEdvHbwAzB1tmZxZb5mDLMG6SrdT2_jhhrntsHpv-60nApwXAtL57j6OJzuPgsPEjusk0wT894R-MbqXr</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1797867950</pqid></control><display><type>article</type><title>Chromatin-Bound MDM2 Regulates Serine Metabolism and Redox Homeostasis Independently of p53</title><source>MEDLINE</source><source>Cell Press Free Archives</source><source>Elsevier ScienceDirect Journals</source><source>Free Full-Text Journals in Chemistry</source><source>EZB Electronic Journals Library</source><creator>Riscal, Romain ; Schrepfer, Emilie ; Arena, Giuseppe ; Cissé, Madi Y. ; Bellvert, Floriant ; Heuillet, Maud ; Rambow, Florian ; Bonneil, Eric ; Sabourdy, Frédérique ; Vincent, Charles ; Ait-Arsa, Imade ; Levade, Thierry ; Thibaut, Pierre ; Marine, Jean-Christophe ; Portais, Jean-Charles ; Sarry, Jean-Emmanuel ; Le Cam, Laurent ; Linares, Laetitia K.</creator><creatorcontrib>Riscal, Romain ; Schrepfer, Emilie ; Arena, Giuseppe ; Cissé, Madi Y. ; Bellvert, Floriant ; Heuillet, Maud ; Rambow, Florian ; Bonneil, Eric ; Sabourdy, Frédérique ; Vincent, Charles ; Ait-Arsa, Imade ; Levade, Thierry ; Thibaut, Pierre ; Marine, Jean-Christophe ; Portais, Jean-Charles ; Sarry, Jean-Emmanuel ; Le Cam, Laurent ; Linares, Laetitia K.</creatorcontrib><description>The mouse double minute 2 (MDM2) oncoprotein is recognized as a major negative regulator of the p53 tumor suppressor, but growing evidence indicates that its oncogenic activities extend beyond p53. Here, we show that MDM2 is recruited to chromatin independently of p53 to regulate a transcriptional program implicated in amino acid metabolism and redox homeostasis. Identification of MDM2 target genes at the whole-genome level highlights an important role for ATF3/4 transcription factors in tethering MDM2 to chromatin. MDM2 recruitment to chromatin is a tightly regulated process that occurs during oxidative stress and serine/glycine deprivation and is modulated by the pyruvate kinase M2 (PKM2) metabolic enzyme. Depletion of endogenous MDM2 in p53-deficient cells impairs serine/glycine metabolism, the NAD+/NADH ratio, and glutathione (GSH) recycling, impacting their redox state and tumorigenic potential. Collectively, our data illustrate a previously unsuspected function of chromatin-bound MDM2 in cancer cell metabolism.
[Display omitted]
•MDM2 is recruited to chromatin independently of p53•Chromatin-bound MDM2 regulates amino acid metabolism and redox homeostasis•PKM2 modulates MDM2 phosphorylation and its recruitment to chromatin•Metabolic functions of MDM2 contribute to cancer cell proliferation
Riscal et al. show that the proto-oncogene MDM2 is recruited to chromatin through direct binding to ATF4 but independently of its well-known partner, p53. Chromatin-bound MDM2 regulates a transcriptional program involved in amino acid metabolism and redox homeostasis that contributes to cancer cell proliferation and tumor growth.</description><identifier>ISSN: 1097-2765</identifier><identifier>EISSN: 1097-4164</identifier><identifier>DOI: 10.1016/j.molcel.2016.04.033</identifier><identifier>PMID: 27264869</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Activating Transcription Factor 4 - genetics ; Activating Transcription Factor 4 - metabolism ; Animals ; Carcinoma, Non-Small-Cell Lung - genetics ; Carcinoma, Non-Small-Cell Lung - metabolism ; Carcinoma, Non-Small-Cell Lung - pathology ; Carrier Proteins - genetics ; Carrier Proteins - metabolism ; Cell Proliferation ; Chromatin - genetics ; Chromatin - metabolism ; Chromatin Assembly and Disassembly ; Colonic Neoplasms - genetics ; Colonic Neoplasms - metabolism ; Colonic Neoplasms - pathology ; Gene Expression Regulation, Neoplastic ; Glycine - metabolism ; HCT116 Cells ; Homeostasis ; Humans ; Life Sciences ; Lung Neoplasms - genetics ; Lung Neoplasms - metabolism ; Lung Neoplasms - pathology ; Membrane Proteins - genetics ; Membrane Proteins - metabolism ; Mice, Nude ; Mutation ; Oxidation-Reduction ; Oxidative Stress ; Phosphorylation ; Protein Binding ; Proto-Oncogene Proteins c-mdm2 - genetics ; Proto-Oncogene Proteins c-mdm2 - metabolism ; RNA Interference ; Serine - metabolism ; Thyroid Hormone-Binding Proteins ; Thyroid Hormones - genetics ; Thyroid Hormones - metabolism ; Time Factors ; Transcription, Genetic ; Transfection ; Tumor Burden ; Tumor Suppressor Protein p53 - genetics ; Tumor Suppressor Protein p53 - metabolism</subject><ispartof>Molecular cell, 2016-06, Vol.62 (6), p.890-902</ispartof><rights>2016 Elsevier Inc.</rights><rights>Copyright © 2016 Elsevier Inc. All rights reserved.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c541t-56541ecbe1c95924c831471e760da56872facfdc7c6b0fb415bbb0b63f22a1053</citedby><cites>FETCH-LOGICAL-c541t-56541ecbe1c95924c831471e760da56872facfdc7c6b0fb415bbb0b63f22a1053</cites><orcidid>0000-0002-3259-8655 ; 0000-0002-6704-2032 ; 0000-0001-7748-6676 ; 0000-0003-0325-878X ; 0000-0001-8969-224X ; 0000-0002-3480-0933</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1097276516301095$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27264869$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-01886397$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Riscal, Romain</creatorcontrib><creatorcontrib>Schrepfer, Emilie</creatorcontrib><creatorcontrib>Arena, Giuseppe</creatorcontrib><creatorcontrib>Cissé, Madi Y.</creatorcontrib><creatorcontrib>Bellvert, Floriant</creatorcontrib><creatorcontrib>Heuillet, Maud</creatorcontrib><creatorcontrib>Rambow, Florian</creatorcontrib><creatorcontrib>Bonneil, Eric</creatorcontrib><creatorcontrib>Sabourdy, Frédérique</creatorcontrib><creatorcontrib>Vincent, Charles</creatorcontrib><creatorcontrib>Ait-Arsa, Imade</creatorcontrib><creatorcontrib>Levade, Thierry</creatorcontrib><creatorcontrib>Thibaut, Pierre</creatorcontrib><creatorcontrib>Marine, Jean-Christophe</creatorcontrib><creatorcontrib>Portais, Jean-Charles</creatorcontrib><creatorcontrib>Sarry, Jean-Emmanuel</creatorcontrib><creatorcontrib>Le Cam, Laurent</creatorcontrib><creatorcontrib>Linares, Laetitia K.</creatorcontrib><title>Chromatin-Bound MDM2 Regulates Serine Metabolism and Redox Homeostasis Independently of p53</title><title>Molecular cell</title><addtitle>Mol Cell</addtitle><description>The mouse double minute 2 (MDM2) oncoprotein is recognized as a major negative regulator of the p53 tumor suppressor, but growing evidence indicates that its oncogenic activities extend beyond p53. Here, we show that MDM2 is recruited to chromatin independently of p53 to regulate a transcriptional program implicated in amino acid metabolism and redox homeostasis. Identification of MDM2 target genes at the whole-genome level highlights an important role for ATF3/4 transcription factors in tethering MDM2 to chromatin. MDM2 recruitment to chromatin is a tightly regulated process that occurs during oxidative stress and serine/glycine deprivation and is modulated by the pyruvate kinase M2 (PKM2) metabolic enzyme. Depletion of endogenous MDM2 in p53-deficient cells impairs serine/glycine metabolism, the NAD+/NADH ratio, and glutathione (GSH) recycling, impacting their redox state and tumorigenic potential. Collectively, our data illustrate a previously unsuspected function of chromatin-bound MDM2 in cancer cell metabolism.
[Display omitted]
•MDM2 is recruited to chromatin independently of p53•Chromatin-bound MDM2 regulates amino acid metabolism and redox homeostasis•PKM2 modulates MDM2 phosphorylation and its recruitment to chromatin•Metabolic functions of MDM2 contribute to cancer cell proliferation
Riscal et al. show that the proto-oncogene MDM2 is recruited to chromatin through direct binding to ATF4 but independently of its well-known partner, p53. Chromatin-bound MDM2 regulates a transcriptional program involved in amino acid metabolism and redox homeostasis that contributes to cancer cell proliferation and tumor growth.</description><subject>Activating Transcription Factor 4 - genetics</subject><subject>Activating Transcription Factor 4 - metabolism</subject><subject>Animals</subject><subject>Carcinoma, Non-Small-Cell Lung - genetics</subject><subject>Carcinoma, Non-Small-Cell Lung - metabolism</subject><subject>Carcinoma, Non-Small-Cell Lung - pathology</subject><subject>Carrier Proteins - genetics</subject><subject>Carrier Proteins - metabolism</subject><subject>Cell Proliferation</subject><subject>Chromatin - genetics</subject><subject>Chromatin - metabolism</subject><subject>Chromatin Assembly and Disassembly</subject><subject>Colonic Neoplasms - genetics</subject><subject>Colonic Neoplasms - metabolism</subject><subject>Colonic Neoplasms - pathology</subject><subject>Gene Expression Regulation, Neoplastic</subject><subject>Glycine - metabolism</subject><subject>HCT116 Cells</subject><subject>Homeostasis</subject><subject>Humans</subject><subject>Life Sciences</subject><subject>Lung Neoplasms - genetics</subject><subject>Lung Neoplasms - metabolism</subject><subject>Lung Neoplasms - pathology</subject><subject>Membrane Proteins - genetics</subject><subject>Membrane Proteins - metabolism</subject><subject>Mice, Nude</subject><subject>Mutation</subject><subject>Oxidation-Reduction</subject><subject>Oxidative Stress</subject><subject>Phosphorylation</subject><subject>Protein Binding</subject><subject>Proto-Oncogene Proteins c-mdm2 - genetics</subject><subject>Proto-Oncogene Proteins c-mdm2 - metabolism</subject><subject>RNA Interference</subject><subject>Serine - metabolism</subject><subject>Thyroid Hormone-Binding Proteins</subject><subject>Thyroid Hormones - genetics</subject><subject>Thyroid Hormones - metabolism</subject><subject>Time Factors</subject><subject>Transcription, Genetic</subject><subject>Transfection</subject><subject>Tumor Burden</subject><subject>Tumor Suppressor Protein p53 - genetics</subject><subject>Tumor Suppressor Protein p53 - metabolism</subject><issn>1097-2765</issn><issn>1097-4164</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkUtv1DAQgC0Eog_4Bwj5CIeknsSP-IJUFspW2lWlAicOluNMqFdJvMRJRf89XmXpseplZmx947HmI-QdsBwYyItd3ofOYZcX6ZQznrOyfEFOgWmVcZD85bEulBQn5CzGHWPARaVfk5NCFZJXUp-SX6u7MfR28kP2OcxDQ7dftgW9xd9zZyeM9DuOfkC6xcnWofOxpzZBt9iEv3QdegxxstFHej00uMcUhql7oKGle1G-Ia9a20V8e8zn5OfV1x-rdba5-Xa9utxkTnCYMiFTQlcjOC10wV1VAleASrLGClmporWubZxysmZtzUHUdc1qWbZFYYGJ8px8XN69s53Zj76344MJ1pv15cYc7hhUlSy1uofEfljY_Rj-zBgn0_uYttjZAcMcDVQAlZZCPwNVWlVSacESyhfUjSHGEdvHbwAzB1tmZxZb5mDLMG6SrdT2_jhhrntsHpv-60nApwXAtL57j6OJzuPgsPEjusk0wT894R-MbqXr</recordid><startdate>20160616</startdate><enddate>20160616</enddate><creator>Riscal, Romain</creator><creator>Schrepfer, Emilie</creator><creator>Arena, Giuseppe</creator><creator>Cissé, Madi Y.</creator><creator>Bellvert, Floriant</creator><creator>Heuillet, Maud</creator><creator>Rambow, Florian</creator><creator>Bonneil, Eric</creator><creator>Sabourdy, Frédérique</creator><creator>Vincent, Charles</creator><creator>Ait-Arsa, Imade</creator><creator>Levade, Thierry</creator><creator>Thibaut, Pierre</creator><creator>Marine, Jean-Christophe</creator><creator>Portais, Jean-Charles</creator><creator>Sarry, Jean-Emmanuel</creator><creator>Le Cam, Laurent</creator><creator>Linares, Laetitia K.</creator><general>Elsevier Inc</general><general>Cell Press</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7TO</scope><scope>7U7</scope><scope>C1K</scope><scope>H94</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-3259-8655</orcidid><orcidid>https://orcid.org/0000-0002-6704-2032</orcidid><orcidid>https://orcid.org/0000-0001-7748-6676</orcidid><orcidid>https://orcid.org/0000-0003-0325-878X</orcidid><orcidid>https://orcid.org/0000-0001-8969-224X</orcidid><orcidid>https://orcid.org/0000-0002-3480-0933</orcidid></search><sort><creationdate>20160616</creationdate><title>Chromatin-Bound MDM2 Regulates Serine Metabolism and Redox Homeostasis Independently of p53</title><author>Riscal, Romain ; Schrepfer, Emilie ; Arena, Giuseppe ; Cissé, Madi Y. ; Bellvert, Floriant ; Heuillet, Maud ; Rambow, Florian ; Bonneil, Eric ; Sabourdy, Frédérique ; Vincent, Charles ; Ait-Arsa, Imade ; Levade, Thierry ; Thibaut, Pierre ; Marine, Jean-Christophe ; Portais, Jean-Charles ; Sarry, Jean-Emmanuel ; Le Cam, Laurent ; Linares, Laetitia K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c541t-56541ecbe1c95924c831471e760da56872facfdc7c6b0fb415bbb0b63f22a1053</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Activating Transcription Factor 4 - genetics</topic><topic>Activating Transcription Factor 4 - metabolism</topic><topic>Animals</topic><topic>Carcinoma, Non-Small-Cell Lung - genetics</topic><topic>Carcinoma, Non-Small-Cell Lung - metabolism</topic><topic>Carcinoma, Non-Small-Cell Lung - pathology</topic><topic>Carrier Proteins - genetics</topic><topic>Carrier Proteins - metabolism</topic><topic>Cell Proliferation</topic><topic>Chromatin - genetics</topic><topic>Chromatin - metabolism</topic><topic>Chromatin Assembly and Disassembly</topic><topic>Colonic Neoplasms - genetics</topic><topic>Colonic Neoplasms - metabolism</topic><topic>Colonic Neoplasms - pathology</topic><topic>Gene Expression Regulation, Neoplastic</topic><topic>Glycine - metabolism</topic><topic>HCT116 Cells</topic><topic>Homeostasis</topic><topic>Humans</topic><topic>Life Sciences</topic><topic>Lung Neoplasms - genetics</topic><topic>Lung Neoplasms - metabolism</topic><topic>Lung Neoplasms - pathology</topic><topic>Membrane Proteins - genetics</topic><topic>Membrane Proteins - metabolism</topic><topic>Mice, Nude</topic><topic>Mutation</topic><topic>Oxidation-Reduction</topic><topic>Oxidative Stress</topic><topic>Phosphorylation</topic><topic>Protein Binding</topic><topic>Proto-Oncogene Proteins c-mdm2 - genetics</topic><topic>Proto-Oncogene Proteins c-mdm2 - metabolism</topic><topic>RNA Interference</topic><topic>Serine - metabolism</topic><topic>Thyroid Hormone-Binding Proteins</topic><topic>Thyroid Hormones - genetics</topic><topic>Thyroid Hormones - metabolism</topic><topic>Time Factors</topic><topic>Transcription, Genetic</topic><topic>Transfection</topic><topic>Tumor Burden</topic><topic>Tumor Suppressor Protein p53 - genetics</topic><topic>Tumor Suppressor Protein p53 - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Riscal, Romain</creatorcontrib><creatorcontrib>Schrepfer, Emilie</creatorcontrib><creatorcontrib>Arena, Giuseppe</creatorcontrib><creatorcontrib>Cissé, Madi Y.</creatorcontrib><creatorcontrib>Bellvert, Floriant</creatorcontrib><creatorcontrib>Heuillet, Maud</creatorcontrib><creatorcontrib>Rambow, Florian</creatorcontrib><creatorcontrib>Bonneil, Eric</creatorcontrib><creatorcontrib>Sabourdy, Frédérique</creatorcontrib><creatorcontrib>Vincent, Charles</creatorcontrib><creatorcontrib>Ait-Arsa, Imade</creatorcontrib><creatorcontrib>Levade, Thierry</creatorcontrib><creatorcontrib>Thibaut, Pierre</creatorcontrib><creatorcontrib>Marine, Jean-Christophe</creatorcontrib><creatorcontrib>Portais, Jean-Charles</creatorcontrib><creatorcontrib>Sarry, Jean-Emmanuel</creatorcontrib><creatorcontrib>Le Cam, Laurent</creatorcontrib><creatorcontrib>Linares, Laetitia K.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Molecular cell</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Riscal, Romain</au><au>Schrepfer, Emilie</au><au>Arena, Giuseppe</au><au>Cissé, Madi Y.</au><au>Bellvert, Floriant</au><au>Heuillet, Maud</au><au>Rambow, Florian</au><au>Bonneil, Eric</au><au>Sabourdy, Frédérique</au><au>Vincent, Charles</au><au>Ait-Arsa, Imade</au><au>Levade, Thierry</au><au>Thibaut, Pierre</au><au>Marine, Jean-Christophe</au><au>Portais, Jean-Charles</au><au>Sarry, Jean-Emmanuel</au><au>Le Cam, Laurent</au><au>Linares, Laetitia K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Chromatin-Bound MDM2 Regulates Serine Metabolism and Redox Homeostasis Independently of p53</atitle><jtitle>Molecular cell</jtitle><addtitle>Mol Cell</addtitle><date>2016-06-16</date><risdate>2016</risdate><volume>62</volume><issue>6</issue><spage>890</spage><epage>902</epage><pages>890-902</pages><issn>1097-2765</issn><eissn>1097-4164</eissn><abstract>The mouse double minute 2 (MDM2) oncoprotein is recognized as a major negative regulator of the p53 tumor suppressor, but growing evidence indicates that its oncogenic activities extend beyond p53. Here, we show that MDM2 is recruited to chromatin independently of p53 to regulate a transcriptional program implicated in amino acid metabolism and redox homeostasis. Identification of MDM2 target genes at the whole-genome level highlights an important role for ATF3/4 transcription factors in tethering MDM2 to chromatin. MDM2 recruitment to chromatin is a tightly regulated process that occurs during oxidative stress and serine/glycine deprivation and is modulated by the pyruvate kinase M2 (PKM2) metabolic enzyme. Depletion of endogenous MDM2 in p53-deficient cells impairs serine/glycine metabolism, the NAD+/NADH ratio, and glutathione (GSH) recycling, impacting their redox state and tumorigenic potential. Collectively, our data illustrate a previously unsuspected function of chromatin-bound MDM2 in cancer cell metabolism.
[Display omitted]
•MDM2 is recruited to chromatin independently of p53•Chromatin-bound MDM2 regulates amino acid metabolism and redox homeostasis•PKM2 modulates MDM2 phosphorylation and its recruitment to chromatin•Metabolic functions of MDM2 contribute to cancer cell proliferation
Riscal et al. show that the proto-oncogene MDM2 is recruited to chromatin through direct binding to ATF4 but independently of its well-known partner, p53. Chromatin-bound MDM2 regulates a transcriptional program involved in amino acid metabolism and redox homeostasis that contributes to cancer cell proliferation and tumor growth.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>27264869</pmid><doi>10.1016/j.molcel.2016.04.033</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-3259-8655</orcidid><orcidid>https://orcid.org/0000-0002-6704-2032</orcidid><orcidid>https://orcid.org/0000-0001-7748-6676</orcidid><orcidid>https://orcid.org/0000-0003-0325-878X</orcidid><orcidid>https://orcid.org/0000-0001-8969-224X</orcidid><orcidid>https://orcid.org/0000-0002-3480-0933</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1097-2765 |
ispartof | Molecular cell, 2016-06, Vol.62 (6), p.890-902 |
issn | 1097-2765 1097-4164 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_01886397v1 |
source | MEDLINE; Cell Press Free Archives; Elsevier ScienceDirect Journals; Free Full-Text Journals in Chemistry; EZB Electronic Journals Library |
subjects | Activating Transcription Factor 4 - genetics Activating Transcription Factor 4 - metabolism Animals Carcinoma, Non-Small-Cell Lung - genetics Carcinoma, Non-Small-Cell Lung - metabolism Carcinoma, Non-Small-Cell Lung - pathology Carrier Proteins - genetics Carrier Proteins - metabolism Cell Proliferation Chromatin - genetics Chromatin - metabolism Chromatin Assembly and Disassembly Colonic Neoplasms - genetics Colonic Neoplasms - metabolism Colonic Neoplasms - pathology Gene Expression Regulation, Neoplastic Glycine - metabolism HCT116 Cells Homeostasis Humans Life Sciences Lung Neoplasms - genetics Lung Neoplasms - metabolism Lung Neoplasms - pathology Membrane Proteins - genetics Membrane Proteins - metabolism Mice, Nude Mutation Oxidation-Reduction Oxidative Stress Phosphorylation Protein Binding Proto-Oncogene Proteins c-mdm2 - genetics Proto-Oncogene Proteins c-mdm2 - metabolism RNA Interference Serine - metabolism Thyroid Hormone-Binding Proteins Thyroid Hormones - genetics Thyroid Hormones - metabolism Time Factors Transcription, Genetic Transfection Tumor Burden Tumor Suppressor Protein p53 - genetics Tumor Suppressor Protein p53 - metabolism |
title | Chromatin-Bound MDM2 Regulates Serine Metabolism and Redox Homeostasis Independently of p53 |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T12%3A48%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Chromatin-Bound%20MDM2%20Regulates%20Serine%20Metabolism%20and%20Redox%20Homeostasis%20Independently%20of%20p53&rft.jtitle=Molecular%20cell&rft.au=Riscal,%20Romain&rft.date=2016-06-16&rft.volume=62&rft.issue=6&rft.spage=890&rft.epage=902&rft.pages=890-902&rft.issn=1097-2765&rft.eissn=1097-4164&rft_id=info:doi/10.1016/j.molcel.2016.04.033&rft_dat=%3Cproquest_hal_p%3E1811896591%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1797867950&rft_id=info:pmid/27264869&rft_els_id=S1097276516301095&rfr_iscdi=true |