Benefits of XPS nanocharacterization for process development and industrial control of thin SiGe channel layers in advanced CMOS technologies

The Si channel of advanced p-type transistors has been replaced by a compressively strained Silicon-Germanium channel (SiGe) in order to improve the device performances. The SiGe thickness and composition must be precisely controlled to reproducibly obtain the same characteristics. In this study, th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials science in semiconductor processing 2017-11, Vol.70, p.105-110
Hauptverfasser: Fauquier, L., Pelissier, B., Jalabert, D., Pierre, F., Hartmann, J.M., Rozé, F., Doloy, D., Le Cunff, D., Beitia, C., Baron, T.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 110
container_issue
container_start_page 105
container_title Materials science in semiconductor processing
container_volume 70
creator Fauquier, L.
Pelissier, B.
Jalabert, D.
Pierre, F.
Hartmann, J.M.
Rozé, F.
Doloy, D.
Le Cunff, D.
Beitia, C.
Baron, T.
description The Si channel of advanced p-type transistors has been replaced by a compressively strained Silicon-Germanium channel (SiGe) in order to improve the device performances. The SiGe thickness and composition must be precisely controlled to reproducibly obtain the same characteristics. In this study, the benefits of X-ray Photoelectron Spectroscopy (XPS) for the process development and the industrial control of thin SiGe channel layers are shown. The use of a parallel Angle Resolved XPS (pARXPS) allowed us to obtain the germanium distribution in very thin SiGe channels, a useful information to better understand the impact of various process steps on the germanium distribution. The hybridization of in-line XPS and X-Ray Reflectivity (XRR) has been used as an industrial process control characterization method to jointly determine the SiGe channel's thickness and germanium composition. This hybrid industrial metrology technique has shown promising results.
doi_str_mv 10.1016/j.mssp.2016.10.028
format Article
fullrecord <record><control><sourceid>hal_cross</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01882053v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1369800116304607</els_id><sourcerecordid>oai_HAL_hal_01882053v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c334t-d8c063a30638f962e6489b7ed6afceedcc4ae1b71efd4e7592d15c6a2bb1603c3</originalsourceid><addsrcrecordid>eNp9UE1LAzEUXERBrf4BT7l62JpstmkKXrT4BZUKVfAWXpO3NmWblCQu1P_gfzZLxaOX94ZhZmCmKC4YHTLKxNV6uIlxO6wyzsSQVvKgOGFyzMuaSnaYMReTUlLKjovTGNeU0lHFxEnxfYsOG5si8Q15f1kQB87rFQTQCYP9gmS9I40PZBu8xhiJwQ5bv92gSwScIdaZz5iChZZo71LwbR-VVtaRhX1AksOcw5a0sMMQs5yA6cBpNGT6PF-QhHrlfOs_LMaz4qiBNuL57x8Ub_d3r9PHcjZ_eJrezErNeZ1KIzUVHHg-spmICkUtJ8sxGgGNRjRa14BsOWbYmBrHo0ll2EgLqJZLJijXfFBc7nNX0KptsBsIO-XBqsebmeo5yqSs6Ih3LGurvVYHH2PA5s_AqOrHV2vVj6_68Xsuj59N13sT5hadxaCittiXtgF1Usbb_-w_I42RCA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Benefits of XPS nanocharacterization for process development and industrial control of thin SiGe channel layers in advanced CMOS technologies</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Fauquier, L. ; Pelissier, B. ; Jalabert, D. ; Pierre, F. ; Hartmann, J.M. ; Rozé, F. ; Doloy, D. ; Le Cunff, D. ; Beitia, C. ; Baron, T.</creator><creatorcontrib>Fauquier, L. ; Pelissier, B. ; Jalabert, D. ; Pierre, F. ; Hartmann, J.M. ; Rozé, F. ; Doloy, D. ; Le Cunff, D. ; Beitia, C. ; Baron, T.</creatorcontrib><description>The Si channel of advanced p-type transistors has been replaced by a compressively strained Silicon-Germanium channel (SiGe) in order to improve the device performances. The SiGe thickness and composition must be precisely controlled to reproducibly obtain the same characteristics. In this study, the benefits of X-ray Photoelectron Spectroscopy (XPS) for the process development and the industrial control of thin SiGe channel layers are shown. The use of a parallel Angle Resolved XPS (pARXPS) allowed us to obtain the germanium distribution in very thin SiGe channels, a useful information to better understand the impact of various process steps on the germanium distribution. The hybridization of in-line XPS and X-Ray Reflectivity (XRR) has been used as an industrial process control characterization method to jointly determine the SiGe channel's thickness and germanium composition. This hybrid industrial metrology technique has shown promising results.</description><identifier>ISSN: 1369-8001</identifier><identifier>EISSN: 1873-4081</identifier><identifier>DOI: 10.1016/j.mssp.2016.10.028</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Physics</subject><ispartof>Materials science in semiconductor processing, 2017-11, Vol.70, p.105-110</ispartof><rights>2016 Elsevier Ltd</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c334t-d8c063a30638f962e6489b7ed6afceedcc4ae1b71efd4e7592d15c6a2bb1603c3</citedby><cites>FETCH-LOGICAL-c334t-d8c063a30638f962e6489b7ed6afceedcc4ae1b71efd4e7592d15c6a2bb1603c3</cites><orcidid>0000-0003-1243-6808 ; 0000-0001-5005-6596</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.mssp.2016.10.028$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://hal.univ-grenoble-alpes.fr/hal-01882053$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Fauquier, L.</creatorcontrib><creatorcontrib>Pelissier, B.</creatorcontrib><creatorcontrib>Jalabert, D.</creatorcontrib><creatorcontrib>Pierre, F.</creatorcontrib><creatorcontrib>Hartmann, J.M.</creatorcontrib><creatorcontrib>Rozé, F.</creatorcontrib><creatorcontrib>Doloy, D.</creatorcontrib><creatorcontrib>Le Cunff, D.</creatorcontrib><creatorcontrib>Beitia, C.</creatorcontrib><creatorcontrib>Baron, T.</creatorcontrib><title>Benefits of XPS nanocharacterization for process development and industrial control of thin SiGe channel layers in advanced CMOS technologies</title><title>Materials science in semiconductor processing</title><description>The Si channel of advanced p-type transistors has been replaced by a compressively strained Silicon-Germanium channel (SiGe) in order to improve the device performances. The SiGe thickness and composition must be precisely controlled to reproducibly obtain the same characteristics. In this study, the benefits of X-ray Photoelectron Spectroscopy (XPS) for the process development and the industrial control of thin SiGe channel layers are shown. The use of a parallel Angle Resolved XPS (pARXPS) allowed us to obtain the germanium distribution in very thin SiGe channels, a useful information to better understand the impact of various process steps on the germanium distribution. The hybridization of in-line XPS and X-Ray Reflectivity (XRR) has been used as an industrial process control characterization method to jointly determine the SiGe channel's thickness and germanium composition. This hybrid industrial metrology technique has shown promising results.</description><subject>Physics</subject><issn>1369-8001</issn><issn>1873-4081</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9UE1LAzEUXERBrf4BT7l62JpstmkKXrT4BZUKVfAWXpO3NmWblCQu1P_gfzZLxaOX94ZhZmCmKC4YHTLKxNV6uIlxO6wyzsSQVvKgOGFyzMuaSnaYMReTUlLKjovTGNeU0lHFxEnxfYsOG5si8Q15f1kQB87rFQTQCYP9gmS9I40PZBu8xhiJwQ5bv92gSwScIdaZz5iChZZo71LwbR-VVtaRhX1AksOcw5a0sMMQs5yA6cBpNGT6PF-QhHrlfOs_LMaz4qiBNuL57x8Ub_d3r9PHcjZ_eJrezErNeZ1KIzUVHHg-spmICkUtJ8sxGgGNRjRa14BsOWbYmBrHo0ll2EgLqJZLJijXfFBc7nNX0KptsBsIO-XBqsebmeo5yqSs6Ih3LGurvVYHH2PA5s_AqOrHV2vVj6_68Xsuj59N13sT5hadxaCittiXtgF1Usbb_-w_I42RCA</recordid><startdate>20171101</startdate><enddate>20171101</enddate><creator>Fauquier, L.</creator><creator>Pelissier, B.</creator><creator>Jalabert, D.</creator><creator>Pierre, F.</creator><creator>Hartmann, J.M.</creator><creator>Rozé, F.</creator><creator>Doloy, D.</creator><creator>Le Cunff, D.</creator><creator>Beitia, C.</creator><creator>Baron, T.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0003-1243-6808</orcidid><orcidid>https://orcid.org/0000-0001-5005-6596</orcidid></search><sort><creationdate>20171101</creationdate><title>Benefits of XPS nanocharacterization for process development and industrial control of thin SiGe channel layers in advanced CMOS technologies</title><author>Fauquier, L. ; Pelissier, B. ; Jalabert, D. ; Pierre, F. ; Hartmann, J.M. ; Rozé, F. ; Doloy, D. ; Le Cunff, D. ; Beitia, C. ; Baron, T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c334t-d8c063a30638f962e6489b7ed6afceedcc4ae1b71efd4e7592d15c6a2bb1603c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fauquier, L.</creatorcontrib><creatorcontrib>Pelissier, B.</creatorcontrib><creatorcontrib>Jalabert, D.</creatorcontrib><creatorcontrib>Pierre, F.</creatorcontrib><creatorcontrib>Hartmann, J.M.</creatorcontrib><creatorcontrib>Rozé, F.</creatorcontrib><creatorcontrib>Doloy, D.</creatorcontrib><creatorcontrib>Le Cunff, D.</creatorcontrib><creatorcontrib>Beitia, C.</creatorcontrib><creatorcontrib>Baron, T.</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Materials science in semiconductor processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fauquier, L.</au><au>Pelissier, B.</au><au>Jalabert, D.</au><au>Pierre, F.</au><au>Hartmann, J.M.</au><au>Rozé, F.</au><au>Doloy, D.</au><au>Le Cunff, D.</au><au>Beitia, C.</au><au>Baron, T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Benefits of XPS nanocharacterization for process development and industrial control of thin SiGe channel layers in advanced CMOS technologies</atitle><jtitle>Materials science in semiconductor processing</jtitle><date>2017-11-01</date><risdate>2017</risdate><volume>70</volume><spage>105</spage><epage>110</epage><pages>105-110</pages><issn>1369-8001</issn><eissn>1873-4081</eissn><abstract>The Si channel of advanced p-type transistors has been replaced by a compressively strained Silicon-Germanium channel (SiGe) in order to improve the device performances. The SiGe thickness and composition must be precisely controlled to reproducibly obtain the same characteristics. In this study, the benefits of X-ray Photoelectron Spectroscopy (XPS) for the process development and the industrial control of thin SiGe channel layers are shown. The use of a parallel Angle Resolved XPS (pARXPS) allowed us to obtain the germanium distribution in very thin SiGe channels, a useful information to better understand the impact of various process steps on the germanium distribution. The hybridization of in-line XPS and X-Ray Reflectivity (XRR) has been used as an industrial process control characterization method to jointly determine the SiGe channel's thickness and germanium composition. This hybrid industrial metrology technique has shown promising results.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.mssp.2016.10.028</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0003-1243-6808</orcidid><orcidid>https://orcid.org/0000-0001-5005-6596</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1369-8001
ispartof Materials science in semiconductor processing, 2017-11, Vol.70, p.105-110
issn 1369-8001
1873-4081
language eng
recordid cdi_hal_primary_oai_HAL_hal_01882053v1
source ScienceDirect Journals (5 years ago - present)
subjects Physics
title Benefits of XPS nanocharacterization for process development and industrial control of thin SiGe channel layers in advanced CMOS technologies
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T20%3A45%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Benefits%20of%20XPS%20nanocharacterization%20for%20process%20development%20and%20industrial%20control%20of%20thin%20SiGe%20channel%20layers%20in%20advanced%20CMOS%20technologies&rft.jtitle=Materials%20science%20in%20semiconductor%20processing&rft.au=Fauquier,%20L.&rft.date=2017-11-01&rft.volume=70&rft.spage=105&rft.epage=110&rft.pages=105-110&rft.issn=1369-8001&rft.eissn=1873-4081&rft_id=info:doi/10.1016/j.mssp.2016.10.028&rft_dat=%3Chal_cross%3Eoai_HAL_hal_01882053v1%3C/hal_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S1369800116304607&rfr_iscdi=true