A mixed POD–PGD approach to parametric thermal impervious soil modeling: Application to canyon streets

•We propose a parametric model dedicated to urban soil thermal modeling.•A combination of two reduced-order methods, i.e. POD and PGD, is presented.•Calculated temperatures are evaluated with respect to in situ measurements.•The parametric soil model is coupled with the SOLENE-microclimat tool.•Its...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sustainable cities and society 2018-10, Vol.42, p.444-461
Hauptverfasser: Azam, Marie-Hélène, Guernouti, Sihem, Musy, Marjorie, Berger, Julien, Poullain, Philippe, Rodler, Auline
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 461
container_issue
container_start_page 444
container_title Sustainable cities and society
container_volume 42
creator Azam, Marie-Hélène
Guernouti, Sihem
Musy, Marjorie
Berger, Julien
Poullain, Philippe
Rodler, Auline
description •We propose a parametric model dedicated to urban soil thermal modeling.•A combination of two reduced-order methods, i.e. POD and PGD, is presented.•Calculated temperatures are evaluated with respect to in situ measurements.•The parametric soil model is coupled with the SOLENE-microclimat tool.•Its accuracy and computational cost are evaluated in an urban setting. Numerical simulation is a powerful tool for assessing the causes of an Urban Heat Island (UHI) effect or quantifying the impact of mitigation solutions on local climatic conditions. However, the numerical cost associated with such a tool is quite significant at the scale of an entire district. Today, the main challenge consists of achieving both a proper representation of the physical phenomena and a critical reduction in the numerical costs of running simulations. This paper presents a combined parametric urban soil model that accurately reproduces thermal heat flux exchanges between the soil and the urban environment with a reduced computational time. For this purpose, the use of a combination of two reduced-order methods is proposed herein: the Proper Orthogonal Decomposition method, and the Proper Generalized Decomposition method. The developed model is applied to two case studies in order to establish a practical evaluation: an open area independent of the influences of the surrounding surface, and a theoretical urban scene with two canyon streets. The error due to the model reduction remains below 0.2 °C on the mean surface temperature for a reduced computational cost of 80%. Compared to in situ measurements the error remains bellow 1.24 °C at the surface.
doi_str_mv 10.1016/j.scs.2018.08.010
format Article
fullrecord <record><control><sourceid>hal_cross</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01870600v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S2210670718309545</els_id><sourcerecordid>oai_HAL_hal_01870600v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c411t-5a008c177bef81d4262c5e380c748ac6c2016eea13c4c108e4a6045d22e358c3</originalsourceid><addsrcrecordid>eNp9kM9KA0EMxhdRsNQ-gLe5euia7H_1tLTaCoX20PswZlN3ym5nmVmLvfkOvqFP4pRKj4ZAPsL3C-QLgluEEAGz-23oyIURYBGCb4SLYBBFCOMsx_TyrCG_DkbObcFXmuFDkg6CuhSt_uRKrJbTn6_v1WwqVNdZo6gWvRGdsqrl3moSfc22VY3Qbcd2r82HE87oRrSm4kbv3h9F2XWNJtVrszuypHYHr1xvmXt3E1xtVON49DeHwfrleT2ZjxfL2eukXIwpQezHqQIoCPP8jTcFVkmURZRyXADlSaEoI_9lxqwwpoQQCk5UBklaRRHHaUHxMLg7na1VIzurW2UP0igt5-VCHnc-pBwygD16L568ZI1zljdnAEEeg5Vb6YOVx2Al-EbwzNOJYf_DXrP1Ds074kpbpl5WRv9D_wJrhIFA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A mixed POD–PGD approach to parametric thermal impervious soil modeling: Application to canyon streets</title><source>Access via ScienceDirect (Elsevier)</source><creator>Azam, Marie-Hélène ; Guernouti, Sihem ; Musy, Marjorie ; Berger, Julien ; Poullain, Philippe ; Rodler, Auline</creator><creatorcontrib>Azam, Marie-Hélène ; Guernouti, Sihem ; Musy, Marjorie ; Berger, Julien ; Poullain, Philippe ; Rodler, Auline</creatorcontrib><description>•We propose a parametric model dedicated to urban soil thermal modeling.•A combination of two reduced-order methods, i.e. POD and PGD, is presented.•Calculated temperatures are evaluated with respect to in situ measurements.•The parametric soil model is coupled with the SOLENE-microclimat tool.•Its accuracy and computational cost are evaluated in an urban setting. Numerical simulation is a powerful tool for assessing the causes of an Urban Heat Island (UHI) effect or quantifying the impact of mitigation solutions on local climatic conditions. However, the numerical cost associated with such a tool is quite significant at the scale of an entire district. Today, the main challenge consists of achieving both a proper representation of the physical phenomena and a critical reduction in the numerical costs of running simulations. This paper presents a combined parametric urban soil model that accurately reproduces thermal heat flux exchanges between the soil and the urban environment with a reduced computational time. For this purpose, the use of a combination of two reduced-order methods is proposed herein: the Proper Orthogonal Decomposition method, and the Proper Generalized Decomposition method. The developed model is applied to two case studies in order to establish a practical evaluation: an open area independent of the influences of the surrounding surface, and a theoretical urban scene with two canyon streets. The error due to the model reduction remains below 0.2 °C on the mean surface temperature for a reduced computational cost of 80%. Compared to in situ measurements the error remains bellow 1.24 °C at the surface.</description><identifier>ISSN: 2210-6707</identifier><identifier>EISSN: 2210-6715</identifier><identifier>DOI: 10.1016/j.scs.2018.08.010</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Civil Engineering ; Construction durable ; Engineering Sciences ; Environmental Engineering ; Environmental Sciences ; Heat transfer ; Model Order Reduction ; Parametric model ; PGD ; POD ; SOLENE-microclimat ; Urban Heat Island ; Urban soil model</subject><ispartof>Sustainable cities and society, 2018-10, Vol.42, p.444-461</ispartof><rights>2018 Elsevier Ltd</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c411t-5a008c177bef81d4262c5e380c748ac6c2016eea13c4c108e4a6045d22e358c3</citedby><cites>FETCH-LOGICAL-c411t-5a008c177bef81d4262c5e380c748ac6c2016eea13c4c108e4a6045d22e358c3</cites><orcidid>0000-0001-8890-1273 ; 0000-0002-2333-1203 ; 0000-0002-2044-427X ; 0000-0002-3509-6896 ; 0000-0003-2785-4009</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.scs.2018.08.010$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://hal.science/hal-01870600$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Azam, Marie-Hélène</creatorcontrib><creatorcontrib>Guernouti, Sihem</creatorcontrib><creatorcontrib>Musy, Marjorie</creatorcontrib><creatorcontrib>Berger, Julien</creatorcontrib><creatorcontrib>Poullain, Philippe</creatorcontrib><creatorcontrib>Rodler, Auline</creatorcontrib><title>A mixed POD–PGD approach to parametric thermal impervious soil modeling: Application to canyon streets</title><title>Sustainable cities and society</title><description>•We propose a parametric model dedicated to urban soil thermal modeling.•A combination of two reduced-order methods, i.e. POD and PGD, is presented.•Calculated temperatures are evaluated with respect to in situ measurements.•The parametric soil model is coupled with the SOLENE-microclimat tool.•Its accuracy and computational cost are evaluated in an urban setting. Numerical simulation is a powerful tool for assessing the causes of an Urban Heat Island (UHI) effect or quantifying the impact of mitigation solutions on local climatic conditions. However, the numerical cost associated with such a tool is quite significant at the scale of an entire district. Today, the main challenge consists of achieving both a proper representation of the physical phenomena and a critical reduction in the numerical costs of running simulations. This paper presents a combined parametric urban soil model that accurately reproduces thermal heat flux exchanges between the soil and the urban environment with a reduced computational time. For this purpose, the use of a combination of two reduced-order methods is proposed herein: the Proper Orthogonal Decomposition method, and the Proper Generalized Decomposition method. The developed model is applied to two case studies in order to establish a practical evaluation: an open area independent of the influences of the surrounding surface, and a theoretical urban scene with two canyon streets. The error due to the model reduction remains below 0.2 °C on the mean surface temperature for a reduced computational cost of 80%. Compared to in situ measurements the error remains bellow 1.24 °C at the surface.</description><subject>Civil Engineering</subject><subject>Construction durable</subject><subject>Engineering Sciences</subject><subject>Environmental Engineering</subject><subject>Environmental Sciences</subject><subject>Heat transfer</subject><subject>Model Order Reduction</subject><subject>Parametric model</subject><subject>PGD</subject><subject>POD</subject><subject>SOLENE-microclimat</subject><subject>Urban Heat Island</subject><subject>Urban soil model</subject><issn>2210-6707</issn><issn>2210-6715</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kM9KA0EMxhdRsNQ-gLe5euia7H_1tLTaCoX20PswZlN3ym5nmVmLvfkOvqFP4pRKj4ZAPsL3C-QLgluEEAGz-23oyIURYBGCb4SLYBBFCOMsx_TyrCG_DkbObcFXmuFDkg6CuhSt_uRKrJbTn6_v1WwqVNdZo6gWvRGdsqrl3moSfc22VY3Qbcd2r82HE87oRrSm4kbv3h9F2XWNJtVrszuypHYHr1xvmXt3E1xtVON49DeHwfrleT2ZjxfL2eukXIwpQezHqQIoCPP8jTcFVkmURZRyXADlSaEoI_9lxqwwpoQQCk5UBklaRRHHaUHxMLg7na1VIzurW2UP0igt5-VCHnc-pBwygD16L568ZI1zljdnAEEeg5Vb6YOVx2Al-EbwzNOJYf_DXrP1Ds074kpbpl5WRv9D_wJrhIFA</recordid><startdate>20181001</startdate><enddate>20181001</enddate><creator>Azam, Marie-Hélène</creator><creator>Guernouti, Sihem</creator><creator>Musy, Marjorie</creator><creator>Berger, Julien</creator><creator>Poullain, Philippe</creator><creator>Rodler, Auline</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0001-8890-1273</orcidid><orcidid>https://orcid.org/0000-0002-2333-1203</orcidid><orcidid>https://orcid.org/0000-0002-2044-427X</orcidid><orcidid>https://orcid.org/0000-0002-3509-6896</orcidid><orcidid>https://orcid.org/0000-0003-2785-4009</orcidid></search><sort><creationdate>20181001</creationdate><title>A mixed POD–PGD approach to parametric thermal impervious soil modeling: Application to canyon streets</title><author>Azam, Marie-Hélène ; Guernouti, Sihem ; Musy, Marjorie ; Berger, Julien ; Poullain, Philippe ; Rodler, Auline</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c411t-5a008c177bef81d4262c5e380c748ac6c2016eea13c4c108e4a6045d22e358c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Civil Engineering</topic><topic>Construction durable</topic><topic>Engineering Sciences</topic><topic>Environmental Engineering</topic><topic>Environmental Sciences</topic><topic>Heat transfer</topic><topic>Model Order Reduction</topic><topic>Parametric model</topic><topic>PGD</topic><topic>POD</topic><topic>SOLENE-microclimat</topic><topic>Urban Heat Island</topic><topic>Urban soil model</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Azam, Marie-Hélène</creatorcontrib><creatorcontrib>Guernouti, Sihem</creatorcontrib><creatorcontrib>Musy, Marjorie</creatorcontrib><creatorcontrib>Berger, Julien</creatorcontrib><creatorcontrib>Poullain, Philippe</creatorcontrib><creatorcontrib>Rodler, Auline</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Sustainable cities and society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Azam, Marie-Hélène</au><au>Guernouti, Sihem</au><au>Musy, Marjorie</au><au>Berger, Julien</au><au>Poullain, Philippe</au><au>Rodler, Auline</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A mixed POD–PGD approach to parametric thermal impervious soil modeling: Application to canyon streets</atitle><jtitle>Sustainable cities and society</jtitle><date>2018-10-01</date><risdate>2018</risdate><volume>42</volume><spage>444</spage><epage>461</epage><pages>444-461</pages><issn>2210-6707</issn><eissn>2210-6715</eissn><abstract>•We propose a parametric model dedicated to urban soil thermal modeling.•A combination of two reduced-order methods, i.e. POD and PGD, is presented.•Calculated temperatures are evaluated with respect to in situ measurements.•The parametric soil model is coupled with the SOLENE-microclimat tool.•Its accuracy and computational cost are evaluated in an urban setting. Numerical simulation is a powerful tool for assessing the causes of an Urban Heat Island (UHI) effect or quantifying the impact of mitigation solutions on local climatic conditions. However, the numerical cost associated with such a tool is quite significant at the scale of an entire district. Today, the main challenge consists of achieving both a proper representation of the physical phenomena and a critical reduction in the numerical costs of running simulations. This paper presents a combined parametric urban soil model that accurately reproduces thermal heat flux exchanges between the soil and the urban environment with a reduced computational time. For this purpose, the use of a combination of two reduced-order methods is proposed herein: the Proper Orthogonal Decomposition method, and the Proper Generalized Decomposition method. The developed model is applied to two case studies in order to establish a practical evaluation: an open area independent of the influences of the surrounding surface, and a theoretical urban scene with two canyon streets. The error due to the model reduction remains below 0.2 °C on the mean surface temperature for a reduced computational cost of 80%. Compared to in situ measurements the error remains bellow 1.24 °C at the surface.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.scs.2018.08.010</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0001-8890-1273</orcidid><orcidid>https://orcid.org/0000-0002-2333-1203</orcidid><orcidid>https://orcid.org/0000-0002-2044-427X</orcidid><orcidid>https://orcid.org/0000-0002-3509-6896</orcidid><orcidid>https://orcid.org/0000-0003-2785-4009</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2210-6707
ispartof Sustainable cities and society, 2018-10, Vol.42, p.444-461
issn 2210-6707
2210-6715
language eng
recordid cdi_hal_primary_oai_HAL_hal_01870600v1
source Access via ScienceDirect (Elsevier)
subjects Civil Engineering
Construction durable
Engineering Sciences
Environmental Engineering
Environmental Sciences
Heat transfer
Model Order Reduction
Parametric model
PGD
POD
SOLENE-microclimat
Urban Heat Island
Urban soil model
title A mixed POD–PGD approach to parametric thermal impervious soil modeling: Application to canyon streets
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T18%3A03%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20mixed%20POD%E2%80%93PGD%20approach%20to%20parametric%20thermal%20impervious%20soil%20modeling:%20Application%20to%20canyon%20streets&rft.jtitle=Sustainable%20cities%20and%20society&rft.au=Azam,%20Marie-H%C3%A9l%C3%A8ne&rft.date=2018-10-01&rft.volume=42&rft.spage=444&rft.epage=461&rft.pages=444-461&rft.issn=2210-6707&rft.eissn=2210-6715&rft_id=info:doi/10.1016/j.scs.2018.08.010&rft_dat=%3Chal_cross%3Eoai_HAL_hal_01870600v1%3C/hal_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S2210670718309545&rfr_iscdi=true