On Slater’s condition and finite convergence of the Douglas–Rachford algorithm for solving convex feasibility problems in Euclidean spaces

The Douglas–Rachford algorithm is a classical and very successful method for solving optimization and feasibility problems. In this paper, we provide novel conditions sufficient for finite convergence in the context of convex feasibility problems. Our analysis builds upon, and considerably extends,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of global optimization 2016-06, Vol.65 (2), p.329-349
Hauptverfasser: Bauschke, Heinz H., Dao, Minh N., Noll, Dominikus, Phan, Hung M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The Douglas–Rachford algorithm is a classical and very successful method for solving optimization and feasibility problems. In this paper, we provide novel conditions sufficient for finite convergence in the context of convex feasibility problems. Our analysis builds upon, and considerably extends, pioneering work by Spingarn. Specifically, we obtain finite convergence in the presence of Slater’s condition in the affine-polyhedral and in a hyperplanar-epigraphical case. Various examples illustrate our results. Numerical experiments demonstrate the competitiveness of the Douglas–Rachford algorithm for solving linear equations with a positivity constraint when compared to the method of alternating projections and the method of reflection–projection.
ISSN:0925-5001
1573-2916
DOI:10.1007/s10898-015-0373-5