On the Green function in visco-elastic media obeying a frequency power-law

In this work, we present an explicit expression for the Green function in a visco‐elastic medium. We choose Szabo and Wu's frequency power law model to describe the visco‐elastic properties and derive a generalized visco‐elastic wave equation. We express the ideal Green function (without any vi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical methods in the applied sciences 2011-05, Vol.34 (7), p.819-830
Hauptverfasser: Bretin, E., Bustos, L. Guadarrama, Wahab, A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 830
container_issue 7
container_start_page 819
container_title Mathematical methods in the applied sciences
container_volume 34
creator Bretin, E.
Bustos, L. Guadarrama
Wahab, A.
description In this work, we present an explicit expression for the Green function in a visco‐elastic medium. We choose Szabo and Wu's frequency power law model to describe the visco‐elastic properties and derive a generalized visco‐elastic wave equation. We express the ideal Green function (without any viscous effect) in terms of the viscous Green function using an attenuation operator. By means of an approximation of the ideal Green function, we address the problem of reconstructing a small anomaly in a visco‐elastic medium from wavefield measurements. Copyright © 2011 John Wiley & Sons, Ltd.
doi_str_mv 10.1002/mma.1404
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01866901v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>901672885</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3994-6c635743b1df003c86e576c479362fff3fd2681897a637341228f19068a6fca33</originalsourceid><addsrcrecordid>eNp10E1vEzEQBmALgUQoSPwEXxBw2DL-WH8cQ4AUlLYXEEdr6tjUsOtN7U1D_j0bJcqNk6XRo3fGLyGvGVwyAP6h7_GSSZBPyIyBtQ2TWj0lM2AaGsmZfE5e1PobAAxjfEa-3WY63ge6LCFkGrfZj2nINGX6mKofmtBhHZOnfVgnpMNd2Kf8iyKNJTxsQ_Z7uhl2oTQd7l6SZxG7Gl6d3gvy48vn74urZnW7_LqYrxovrJWN8kq0Woo7to4AwhsVWq281FYoHmMUcc2VYcZqVEILyTg3kVlQBlX0KMQFeX_MvcfObUrqsezdgMldzVfuMANmlLLAHtlk3x7tpgzTvXV0_fSt0HWYw7CtblJKc2PaSb47Sl-GWkuI52gG7tCsm5p1h2Yn-uYUitVjFwtmn-rZcwnKKjgsb45ul7qw_2-eu76en3JPPtUx_D17LH-c0kK37ufN0n28WbWfxHLhjPgHq3KSuw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>901672885</pqid></control><display><type>article</type><title>On the Green function in visco-elastic media obeying a frequency power-law</title><source>Wiley Blackwell Single Titles</source><creator>Bretin, E. ; Bustos, L. Guadarrama ; Wahab, A.</creator><creatorcontrib>Bretin, E. ; Bustos, L. Guadarrama ; Wahab, A.</creatorcontrib><description>In this work, we present an explicit expression for the Green function in a visco‐elastic medium. We choose Szabo and Wu's frequency power law model to describe the visco‐elastic properties and derive a generalized visco‐elastic wave equation. We express the ideal Green function (without any viscous effect) in terms of the viscous Green function using an attenuation operator. By means of an approximation of the ideal Green function, we address the problem of reconstructing a small anomaly in a visco‐elastic medium from wavefield measurements. Copyright © 2011 John Wiley &amp; Sons, Ltd.</description><identifier>ISSN: 0170-4214</identifier><identifier>ISSN: 1099-1476</identifier><identifier>EISSN: 1099-1476</identifier><identifier>DOI: 10.1002/mma.1404</identifier><identifier>CODEN: MMSCDB</identifier><language>eng</language><publisher>Chichester, UK: John Wiley &amp; Sons, Ltd</publisher><subject>Approximation ; Attenuation ; elasticity imaging ; Exact sciences and technology ; frequency power law ; Green function ; Green's functions ; Mathematical analysis ; Mathematical models ; Mathematics ; Numerical Analysis ; Operators ; Ordinary differential equations ; Partial differential equations ; Power law ; Sciences and techniques of general use ; stationary phase theorem ; visco-elastic wave equation ; Viscoelasticity</subject><ispartof>Mathematical methods in the applied sciences, 2011-05, Vol.34 (7), p.819-830</ispartof><rights>Copyright © 2011 John Wiley &amp; Sons, Ltd.</rights><rights>2015 INIST-CNRS</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3994-6c635743b1df003c86e576c479362fff3fd2681897a637341228f19068a6fca33</citedby><cites>FETCH-LOGICAL-c3994-6c635743b1df003c86e576c479362fff3fd2681897a637341228f19068a6fca33</cites><orcidid>0000-0003-1319-7538</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fmma.1404$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fmma.1404$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,780,784,885,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=24069601$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-01866901$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Bretin, E.</creatorcontrib><creatorcontrib>Bustos, L. Guadarrama</creatorcontrib><creatorcontrib>Wahab, A.</creatorcontrib><title>On the Green function in visco-elastic media obeying a frequency power-law</title><title>Mathematical methods in the applied sciences</title><addtitle>Math. Meth. Appl. Sci</addtitle><description>In this work, we present an explicit expression for the Green function in a visco‐elastic medium. We choose Szabo and Wu's frequency power law model to describe the visco‐elastic properties and derive a generalized visco‐elastic wave equation. We express the ideal Green function (without any viscous effect) in terms of the viscous Green function using an attenuation operator. By means of an approximation of the ideal Green function, we address the problem of reconstructing a small anomaly in a visco‐elastic medium from wavefield measurements. Copyright © 2011 John Wiley &amp; Sons, Ltd.</description><subject>Approximation</subject><subject>Attenuation</subject><subject>elasticity imaging</subject><subject>Exact sciences and technology</subject><subject>frequency power law</subject><subject>Green function</subject><subject>Green's functions</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Mathematics</subject><subject>Numerical Analysis</subject><subject>Operators</subject><subject>Ordinary differential equations</subject><subject>Partial differential equations</subject><subject>Power law</subject><subject>Sciences and techniques of general use</subject><subject>stationary phase theorem</subject><subject>visco-elastic wave equation</subject><subject>Viscoelasticity</subject><issn>0170-4214</issn><issn>1099-1476</issn><issn>1099-1476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp10E1vEzEQBmALgUQoSPwEXxBw2DL-WH8cQ4AUlLYXEEdr6tjUsOtN7U1D_j0bJcqNk6XRo3fGLyGvGVwyAP6h7_GSSZBPyIyBtQ2TWj0lM2AaGsmZfE5e1PobAAxjfEa-3WY63ge6LCFkGrfZj2nINGX6mKofmtBhHZOnfVgnpMNd2Kf8iyKNJTxsQ_Z7uhl2oTQd7l6SZxG7Gl6d3gvy48vn74urZnW7_LqYrxovrJWN8kq0Woo7to4AwhsVWq281FYoHmMUcc2VYcZqVEILyTg3kVlQBlX0KMQFeX_MvcfObUrqsezdgMldzVfuMANmlLLAHtlk3x7tpgzTvXV0_fSt0HWYw7CtblJKc2PaSb47Sl-GWkuI52gG7tCsm5p1h2Yn-uYUitVjFwtmn-rZcwnKKjgsb45ul7qw_2-eu76en3JPPtUx_D17LH-c0kK37ufN0n28WbWfxHLhjPgHq3KSuw</recordid><startdate>20110515</startdate><enddate>20110515</enddate><creator>Bretin, E.</creator><creator>Bustos, L. Guadarrama</creator><creator>Wahab, A.</creator><general>John Wiley &amp; Sons, Ltd</general><general>Wiley</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0003-1319-7538</orcidid></search><sort><creationdate>20110515</creationdate><title>On the Green function in visco-elastic media obeying a frequency power-law</title><author>Bretin, E. ; Bustos, L. Guadarrama ; Wahab, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3994-6c635743b1df003c86e576c479362fff3fd2681897a637341228f19068a6fca33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Approximation</topic><topic>Attenuation</topic><topic>elasticity imaging</topic><topic>Exact sciences and technology</topic><topic>frequency power law</topic><topic>Green function</topic><topic>Green's functions</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Mathematics</topic><topic>Numerical Analysis</topic><topic>Operators</topic><topic>Ordinary differential equations</topic><topic>Partial differential equations</topic><topic>Power law</topic><topic>Sciences and techniques of general use</topic><topic>stationary phase theorem</topic><topic>visco-elastic wave equation</topic><topic>Viscoelasticity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bretin, E.</creatorcontrib><creatorcontrib>Bustos, L. Guadarrama</creatorcontrib><creatorcontrib>Wahab, A.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Mathematical methods in the applied sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bretin, E.</au><au>Bustos, L. Guadarrama</au><au>Wahab, A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the Green function in visco-elastic media obeying a frequency power-law</atitle><jtitle>Mathematical methods in the applied sciences</jtitle><addtitle>Math. Meth. Appl. Sci</addtitle><date>2011-05-15</date><risdate>2011</risdate><volume>34</volume><issue>7</issue><spage>819</spage><epage>830</epage><pages>819-830</pages><issn>0170-4214</issn><issn>1099-1476</issn><eissn>1099-1476</eissn><coden>MMSCDB</coden><abstract>In this work, we present an explicit expression for the Green function in a visco‐elastic medium. We choose Szabo and Wu's frequency power law model to describe the visco‐elastic properties and derive a generalized visco‐elastic wave equation. We express the ideal Green function (without any viscous effect) in terms of the viscous Green function using an attenuation operator. By means of an approximation of the ideal Green function, we address the problem of reconstructing a small anomaly in a visco‐elastic medium from wavefield measurements. Copyright © 2011 John Wiley &amp; Sons, Ltd.</abstract><cop>Chichester, UK</cop><pub>John Wiley &amp; Sons, Ltd</pub><doi>10.1002/mma.1404</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-1319-7538</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0170-4214
ispartof Mathematical methods in the applied sciences, 2011-05, Vol.34 (7), p.819-830
issn 0170-4214
1099-1476
1099-1476
language eng
recordid cdi_hal_primary_oai_HAL_hal_01866901v1
source Wiley Blackwell Single Titles
subjects Approximation
Attenuation
elasticity imaging
Exact sciences and technology
frequency power law
Green function
Green's functions
Mathematical analysis
Mathematical models
Mathematics
Numerical Analysis
Operators
Ordinary differential equations
Partial differential equations
Power law
Sciences and techniques of general use
stationary phase theorem
visco-elastic wave equation
Viscoelasticity
title On the Green function in visco-elastic media obeying a frequency power-law
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T08%3A57%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20Green%20function%20in%20visco-elastic%20media%20obeying%20a%20frequency%20power-law&rft.jtitle=Mathematical%20methods%20in%20the%20applied%20sciences&rft.au=Bretin,%20E.&rft.date=2011-05-15&rft.volume=34&rft.issue=7&rft.spage=819&rft.epage=830&rft.pages=819-830&rft.issn=0170-4214&rft.eissn=1099-1476&rft.coden=MMSCDB&rft_id=info:doi/10.1002/mma.1404&rft_dat=%3Cproquest_hal_p%3E901672885%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=901672885&rft_id=info:pmid/&rfr_iscdi=true