On the Green function in visco-elastic media obeying a frequency power-law
In this work, we present an explicit expression for the Green function in a visco‐elastic medium. We choose Szabo and Wu's frequency power law model to describe the visco‐elastic properties and derive a generalized visco‐elastic wave equation. We express the ideal Green function (without any vi...
Gespeichert in:
Veröffentlicht in: | Mathematical methods in the applied sciences 2011-05, Vol.34 (7), p.819-830 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 830 |
---|---|
container_issue | 7 |
container_start_page | 819 |
container_title | Mathematical methods in the applied sciences |
container_volume | 34 |
creator | Bretin, E. Bustos, L. Guadarrama Wahab, A. |
description | In this work, we present an explicit expression for the Green function in a visco‐elastic medium. We choose Szabo and Wu's frequency power law model to describe the visco‐elastic properties and derive a generalized visco‐elastic wave equation. We express the ideal Green function (without any viscous effect) in terms of the viscous Green function using an attenuation operator. By means of an approximation of the ideal Green function, we address the problem of reconstructing a small anomaly in a visco‐elastic medium from wavefield measurements. Copyright © 2011 John Wiley & Sons, Ltd. |
doi_str_mv | 10.1002/mma.1404 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01866901v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>901672885</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3994-6c635743b1df003c86e576c479362fff3fd2681897a637341228f19068a6fca33</originalsourceid><addsrcrecordid>eNp10E1vEzEQBmALgUQoSPwEXxBw2DL-WH8cQ4AUlLYXEEdr6tjUsOtN7U1D_j0bJcqNk6XRo3fGLyGvGVwyAP6h7_GSSZBPyIyBtQ2TWj0lM2AaGsmZfE5e1PobAAxjfEa-3WY63ge6LCFkGrfZj2nINGX6mKofmtBhHZOnfVgnpMNd2Kf8iyKNJTxsQ_Z7uhl2oTQd7l6SZxG7Gl6d3gvy48vn74urZnW7_LqYrxovrJWN8kq0Woo7to4AwhsVWq281FYoHmMUcc2VYcZqVEILyTg3kVlQBlX0KMQFeX_MvcfObUrqsezdgMldzVfuMANmlLLAHtlk3x7tpgzTvXV0_fSt0HWYw7CtblJKc2PaSb47Sl-GWkuI52gG7tCsm5p1h2Yn-uYUitVjFwtmn-rZcwnKKjgsb45ul7qw_2-eu76en3JPPtUx_D17LH-c0kK37ufN0n28WbWfxHLhjPgHq3KSuw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>901672885</pqid></control><display><type>article</type><title>On the Green function in visco-elastic media obeying a frequency power-law</title><source>Wiley Blackwell Single Titles</source><creator>Bretin, E. ; Bustos, L. Guadarrama ; Wahab, A.</creator><creatorcontrib>Bretin, E. ; Bustos, L. Guadarrama ; Wahab, A.</creatorcontrib><description>In this work, we present an explicit expression for the Green function in a visco‐elastic medium. We choose Szabo and Wu's frequency power law model to describe the visco‐elastic properties and derive a generalized visco‐elastic wave equation. We express the ideal Green function (without any viscous effect) in terms of the viscous Green function using an attenuation operator. By means of an approximation of the ideal Green function, we address the problem of reconstructing a small anomaly in a visco‐elastic medium from wavefield measurements. Copyright © 2011 John Wiley & Sons, Ltd.</description><identifier>ISSN: 0170-4214</identifier><identifier>ISSN: 1099-1476</identifier><identifier>EISSN: 1099-1476</identifier><identifier>DOI: 10.1002/mma.1404</identifier><identifier>CODEN: MMSCDB</identifier><language>eng</language><publisher>Chichester, UK: John Wiley & Sons, Ltd</publisher><subject>Approximation ; Attenuation ; elasticity imaging ; Exact sciences and technology ; frequency power law ; Green function ; Green's functions ; Mathematical analysis ; Mathematical models ; Mathematics ; Numerical Analysis ; Operators ; Ordinary differential equations ; Partial differential equations ; Power law ; Sciences and techniques of general use ; stationary phase theorem ; visco-elastic wave equation ; Viscoelasticity</subject><ispartof>Mathematical methods in the applied sciences, 2011-05, Vol.34 (7), p.819-830</ispartof><rights>Copyright © 2011 John Wiley & Sons, Ltd.</rights><rights>2015 INIST-CNRS</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3994-6c635743b1df003c86e576c479362fff3fd2681897a637341228f19068a6fca33</citedby><cites>FETCH-LOGICAL-c3994-6c635743b1df003c86e576c479362fff3fd2681897a637341228f19068a6fca33</cites><orcidid>0000-0003-1319-7538</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fmma.1404$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fmma.1404$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,780,784,885,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24069601$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-01866901$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Bretin, E.</creatorcontrib><creatorcontrib>Bustos, L. Guadarrama</creatorcontrib><creatorcontrib>Wahab, A.</creatorcontrib><title>On the Green function in visco-elastic media obeying a frequency power-law</title><title>Mathematical methods in the applied sciences</title><addtitle>Math. Meth. Appl. Sci</addtitle><description>In this work, we present an explicit expression for the Green function in a visco‐elastic medium. We choose Szabo and Wu's frequency power law model to describe the visco‐elastic properties and derive a generalized visco‐elastic wave equation. We express the ideal Green function (without any viscous effect) in terms of the viscous Green function using an attenuation operator. By means of an approximation of the ideal Green function, we address the problem of reconstructing a small anomaly in a visco‐elastic medium from wavefield measurements. Copyright © 2011 John Wiley & Sons, Ltd.</description><subject>Approximation</subject><subject>Attenuation</subject><subject>elasticity imaging</subject><subject>Exact sciences and technology</subject><subject>frequency power law</subject><subject>Green function</subject><subject>Green's functions</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Mathematics</subject><subject>Numerical Analysis</subject><subject>Operators</subject><subject>Ordinary differential equations</subject><subject>Partial differential equations</subject><subject>Power law</subject><subject>Sciences and techniques of general use</subject><subject>stationary phase theorem</subject><subject>visco-elastic wave equation</subject><subject>Viscoelasticity</subject><issn>0170-4214</issn><issn>1099-1476</issn><issn>1099-1476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp10E1vEzEQBmALgUQoSPwEXxBw2DL-WH8cQ4AUlLYXEEdr6tjUsOtN7U1D_j0bJcqNk6XRo3fGLyGvGVwyAP6h7_GSSZBPyIyBtQ2TWj0lM2AaGsmZfE5e1PobAAxjfEa-3WY63ge6LCFkGrfZj2nINGX6mKofmtBhHZOnfVgnpMNd2Kf8iyKNJTxsQ_Z7uhl2oTQd7l6SZxG7Gl6d3gvy48vn74urZnW7_LqYrxovrJWN8kq0Woo7to4AwhsVWq281FYoHmMUcc2VYcZqVEILyTg3kVlQBlX0KMQFeX_MvcfObUrqsezdgMldzVfuMANmlLLAHtlk3x7tpgzTvXV0_fSt0HWYw7CtblJKc2PaSb47Sl-GWkuI52gG7tCsm5p1h2Yn-uYUitVjFwtmn-rZcwnKKjgsb45ul7qw_2-eu76en3JPPtUx_D17LH-c0kK37ufN0n28WbWfxHLhjPgHq3KSuw</recordid><startdate>20110515</startdate><enddate>20110515</enddate><creator>Bretin, E.</creator><creator>Bustos, L. Guadarrama</creator><creator>Wahab, A.</creator><general>John Wiley & Sons, Ltd</general><general>Wiley</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0003-1319-7538</orcidid></search><sort><creationdate>20110515</creationdate><title>On the Green function in visco-elastic media obeying a frequency power-law</title><author>Bretin, E. ; Bustos, L. Guadarrama ; Wahab, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3994-6c635743b1df003c86e576c479362fff3fd2681897a637341228f19068a6fca33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Approximation</topic><topic>Attenuation</topic><topic>elasticity imaging</topic><topic>Exact sciences and technology</topic><topic>frequency power law</topic><topic>Green function</topic><topic>Green's functions</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Mathematics</topic><topic>Numerical Analysis</topic><topic>Operators</topic><topic>Ordinary differential equations</topic><topic>Partial differential equations</topic><topic>Power law</topic><topic>Sciences and techniques of general use</topic><topic>stationary phase theorem</topic><topic>visco-elastic wave equation</topic><topic>Viscoelasticity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bretin, E.</creatorcontrib><creatorcontrib>Bustos, L. Guadarrama</creatorcontrib><creatorcontrib>Wahab, A.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Mathematical methods in the applied sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bretin, E.</au><au>Bustos, L. Guadarrama</au><au>Wahab, A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the Green function in visco-elastic media obeying a frequency power-law</atitle><jtitle>Mathematical methods in the applied sciences</jtitle><addtitle>Math. Meth. Appl. Sci</addtitle><date>2011-05-15</date><risdate>2011</risdate><volume>34</volume><issue>7</issue><spage>819</spage><epage>830</epage><pages>819-830</pages><issn>0170-4214</issn><issn>1099-1476</issn><eissn>1099-1476</eissn><coden>MMSCDB</coden><abstract>In this work, we present an explicit expression for the Green function in a visco‐elastic medium. We choose Szabo and Wu's frequency power law model to describe the visco‐elastic properties and derive a generalized visco‐elastic wave equation. We express the ideal Green function (without any viscous effect) in terms of the viscous Green function using an attenuation operator. By means of an approximation of the ideal Green function, we address the problem of reconstructing a small anomaly in a visco‐elastic medium from wavefield measurements. Copyright © 2011 John Wiley & Sons, Ltd.</abstract><cop>Chichester, UK</cop><pub>John Wiley & Sons, Ltd</pub><doi>10.1002/mma.1404</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-1319-7538</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0170-4214 |
ispartof | Mathematical methods in the applied sciences, 2011-05, Vol.34 (7), p.819-830 |
issn | 0170-4214 1099-1476 1099-1476 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_01866901v1 |
source | Wiley Blackwell Single Titles |
subjects | Approximation Attenuation elasticity imaging Exact sciences and technology frequency power law Green function Green's functions Mathematical analysis Mathematical models Mathematics Numerical Analysis Operators Ordinary differential equations Partial differential equations Power law Sciences and techniques of general use stationary phase theorem visco-elastic wave equation Viscoelasticity |
title | On the Green function in visco-elastic media obeying a frequency power-law |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T08%3A57%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20Green%20function%20in%20visco-elastic%20media%20obeying%20a%20frequency%20power-law&rft.jtitle=Mathematical%20methods%20in%20the%20applied%20sciences&rft.au=Bretin,%20E.&rft.date=2011-05-15&rft.volume=34&rft.issue=7&rft.spage=819&rft.epage=830&rft.pages=819-830&rft.issn=0170-4214&rft.eissn=1099-1476&rft.coden=MMSCDB&rft_id=info:doi/10.1002/mma.1404&rft_dat=%3Cproquest_hal_p%3E901672885%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=901672885&rft_id=info:pmid/&rfr_iscdi=true |