Regularization of Discrete Contour by Willmore Energy
We propose a novel approach to reconstruct shapes from digital data. Contrarily to most methods, reconstructed shapes are smooth with a well-defined curvature field and have the same digitization as the input data: the range of application we have in mind is especially post-processing to image segme...
Gespeichert in:
Veröffentlicht in: | Journal of mathematical imaging and vision 2011-06, Vol.40 (2), p.214-229 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We propose a novel approach to reconstruct shapes from digital data. Contrarily to most methods, reconstructed shapes are smooth with a well-defined curvature field and have the same digitization as the input data: the range of application we have in mind is especially post-processing to image segmentation where labelled regions are digital objects. For this purpose, we introduce three new algorithms to regularize digital contours based on the minimization of Willmore energy: our first algorithm is based on tools coming from discrete geometry, the second is related to convex geometry while the third approach is a constrained phase field minimization. The three algorithms are described in details and the convergence of the phase field approach is investigated. We present a comparative evaluation of all three methods, in terms of the accuracy of curvature estimators and computation time. |
---|---|
ISSN: | 0924-9907 1573-7683 |
DOI: | 10.1007/s10851-010-0257-8 |