Reduction of State-to-State to Macroscopic Models for Hypersonics
Four different types of macroscopic models developed for the vibration-chemistry coupling in nonequilibrium flows for re-entry applications are presented. First, using an approach based on nonequilibrium thermodynamics, global rate coefficients of dissociation of N2 and O2 under parent molecular or...
Gespeichert in:
Veröffentlicht in: | The open plasma physics journal 2014-06, Vol.7 (1), p.60-75 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 75 |
---|---|
container_issue | 1 |
container_start_page | 60 |
container_title | The open plasma physics journal |
container_volume | 7 |
creator | Bourdon, A. Annaloro, J. Bultel, A. Capitelli, M. Colonna, G. Guy, A. Magin, T.E. Munaf, A. Perrin, M.Y. Pietanza, L.D. |
description | Four different types of macroscopic models developed for the vibration-chemistry coupling in nonequilibrium flows for re-entry applications are presented. First, using an approach based on nonequilibrium thermodynamics, global rate coefficients of dissociation of N2 and O2 under parent molecular or atomic impact and backward molecular recombination are determined. Then a Two-Level Distribution (TLD) model is developed, in which a relaxation equation for vibrational temperature is solved as in the case of multi-temperature models but with the simultaneous solution of a kinetic equation, as in the case of state-to-state models, but only for the last vibrational level. In a third approach, a multi-internal temperature model is presented to describe accurately the vibrational distribution function in using several groups of levels, within which the levels are assumed to follow a Boltzmann distribution at an internal temperature of the group. This multi-internal temperature model allows us to describe accurately the vibrational energy relaxation and dissociation processes behind a strong shock wave. Finally, a rovibrational collisional coarse-grain model is developed to reduce a detailed rovibrational mechanism for the internal energy excitation and dissociation processes behind a strong shock wave in a nitrogen flow. |
doi_str_mv | 10.2174/1876534301407010060 |
format | Article |
fullrecord | <record><control><sourceid>hal_cross</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01866287v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_HAL_hal_01866287v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1730-fea3f761d4dca6aa2500fea79b82c221ea376b4d780c4bb8f1167ee3f41989683</originalsourceid><addsrcrecordid>eNptkE9LxDAQxYMouK5-Ai-5eojOJGmSHsuiVugi-Odc0jTBSt0sTRX229vuinjwNI_fvBkej5BLhGuOWt6g0SoTUgBK0IAACo7IYqZsxsd_9Ck5S-l9cmTI5YIUT779dGMXNzQG-jza0bMxsr2gY6Rr64aYXNx2jq5j6_tEQxxoudv6IcVN59I5OQm2T_7iZy7J693ty6pk1eP9w6qomEMtgAVvRdAKW9k6q6zlGcDEdN4Y7jjHaa1VI1ttwMmmMQFRae9FkJibXBmxJFeHv2-2r7dD92GHXR1tV5dFVc8M0CjFjf7CySsO3jl8Gnz4PUCo58bqfxoT37ckXMo</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Reduction of State-to-State to Macroscopic Models for Hypersonics</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Bourdon, A. ; Annaloro, J. ; Bultel, A. ; Capitelli, M. ; Colonna, G. ; Guy, A. ; Magin, T.E. ; Munaf, A. ; Perrin, M.Y. ; Pietanza, L.D.</creator><creatorcontrib>Bourdon, A. ; Annaloro, J. ; Bultel, A. ; Capitelli, M. ; Colonna, G. ; Guy, A. ; Magin, T.E. ; Munaf, A. ; Perrin, M.Y. ; Pietanza, L.D.</creatorcontrib><description>Four different types of macroscopic models developed for the vibration-chemistry coupling in nonequilibrium flows for re-entry applications are presented. First, using an approach based on nonequilibrium thermodynamics, global rate coefficients of dissociation of N2 and O2 under parent molecular or atomic impact and backward molecular recombination are determined. Then a Two-Level Distribution (TLD) model is developed, in which a relaxation equation for vibrational temperature is solved as in the case of multi-temperature models but with the simultaneous solution of a kinetic equation, as in the case of state-to-state models, but only for the last vibrational level. In a third approach, a multi-internal temperature model is presented to describe accurately the vibrational distribution function in using several groups of levels, within which the levels are assumed to follow a Boltzmann distribution at an internal temperature of the group. This multi-internal temperature model allows us to describe accurately the vibrational energy relaxation and dissociation processes behind a strong shock wave. Finally, a rovibrational collisional coarse-grain model is developed to reduce a detailed rovibrational mechanism for the internal energy excitation and dissociation processes behind a strong shock wave in a nitrogen flow.</description><identifier>ISSN: 1876-5343</identifier><identifier>EISSN: 1876-5343</identifier><identifier>DOI: 10.2174/1876534301407010060</identifier><language>eng</language><publisher>Bentham Open</publisher><subject>Engineering Sciences ; Plasmas</subject><ispartof>The open plasma physics journal, 2014-06, Vol.7 (1), p.60-75</ispartof><rights>Attribution - NonCommercial</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1730-fea3f761d4dca6aa2500fea79b82c221ea376b4d780c4bb8f1167ee3f41989683</citedby><orcidid>0000-0003-3662-4651 ; 0000-0003-4792-9995 ; 0000-0002-9205-5273 ; 0000-0002-4376-1518</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,315,781,785,886,27929,27930</link.rule.ids><backlink>$$Uhttps://hal.science/hal-01866287$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Bourdon, A.</creatorcontrib><creatorcontrib>Annaloro, J.</creatorcontrib><creatorcontrib>Bultel, A.</creatorcontrib><creatorcontrib>Capitelli, M.</creatorcontrib><creatorcontrib>Colonna, G.</creatorcontrib><creatorcontrib>Guy, A.</creatorcontrib><creatorcontrib>Magin, T.E.</creatorcontrib><creatorcontrib>Munaf, A.</creatorcontrib><creatorcontrib>Perrin, M.Y.</creatorcontrib><creatorcontrib>Pietanza, L.D.</creatorcontrib><title>Reduction of State-to-State to Macroscopic Models for Hypersonics</title><title>The open plasma physics journal</title><description>Four different types of macroscopic models developed for the vibration-chemistry coupling in nonequilibrium flows for re-entry applications are presented. First, using an approach based on nonequilibrium thermodynamics, global rate coefficients of dissociation of N2 and O2 under parent molecular or atomic impact and backward molecular recombination are determined. Then a Two-Level Distribution (TLD) model is developed, in which a relaxation equation for vibrational temperature is solved as in the case of multi-temperature models but with the simultaneous solution of a kinetic equation, as in the case of state-to-state models, but only for the last vibrational level. In a third approach, a multi-internal temperature model is presented to describe accurately the vibrational distribution function in using several groups of levels, within which the levels are assumed to follow a Boltzmann distribution at an internal temperature of the group. This multi-internal temperature model allows us to describe accurately the vibrational energy relaxation and dissociation processes behind a strong shock wave. Finally, a rovibrational collisional coarse-grain model is developed to reduce a detailed rovibrational mechanism for the internal energy excitation and dissociation processes behind a strong shock wave in a nitrogen flow.</description><subject>Engineering Sciences</subject><subject>Plasmas</subject><issn>1876-5343</issn><issn>1876-5343</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNptkE9LxDAQxYMouK5-Ai-5eojOJGmSHsuiVugi-Odc0jTBSt0sTRX229vuinjwNI_fvBkej5BLhGuOWt6g0SoTUgBK0IAACo7IYqZsxsd_9Ck5S-l9cmTI5YIUT779dGMXNzQG-jza0bMxsr2gY6Rr64aYXNx2jq5j6_tEQxxoudv6IcVN59I5OQm2T_7iZy7J693ty6pk1eP9w6qomEMtgAVvRdAKW9k6q6zlGcDEdN4Y7jjHaa1VI1ttwMmmMQFRae9FkJibXBmxJFeHv2-2r7dD92GHXR1tV5dFVc8M0CjFjf7CySsO3jl8Gnz4PUCo58bqfxoT37ckXMo</recordid><startdate>20140627</startdate><enddate>20140627</enddate><creator>Bourdon, A.</creator><creator>Annaloro, J.</creator><creator>Bultel, A.</creator><creator>Capitelli, M.</creator><creator>Colonna, G.</creator><creator>Guy, A.</creator><creator>Magin, T.E.</creator><creator>Munaf, A.</creator><creator>Perrin, M.Y.</creator><creator>Pietanza, L.D.</creator><general>Bentham Open</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0003-3662-4651</orcidid><orcidid>https://orcid.org/0000-0003-4792-9995</orcidid><orcidid>https://orcid.org/0000-0002-9205-5273</orcidid><orcidid>https://orcid.org/0000-0002-4376-1518</orcidid></search><sort><creationdate>20140627</creationdate><title>Reduction of State-to-State to Macroscopic Models for Hypersonics</title><author>Bourdon, A. ; Annaloro, J. ; Bultel, A. ; Capitelli, M. ; Colonna, G. ; Guy, A. ; Magin, T.E. ; Munaf, A. ; Perrin, M.Y. ; Pietanza, L.D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1730-fea3f761d4dca6aa2500fea79b82c221ea376b4d780c4bb8f1167ee3f41989683</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Engineering Sciences</topic><topic>Plasmas</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bourdon, A.</creatorcontrib><creatorcontrib>Annaloro, J.</creatorcontrib><creatorcontrib>Bultel, A.</creatorcontrib><creatorcontrib>Capitelli, M.</creatorcontrib><creatorcontrib>Colonna, G.</creatorcontrib><creatorcontrib>Guy, A.</creatorcontrib><creatorcontrib>Magin, T.E.</creatorcontrib><creatorcontrib>Munaf, A.</creatorcontrib><creatorcontrib>Perrin, M.Y.</creatorcontrib><creatorcontrib>Pietanza, L.D.</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>The open plasma physics journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bourdon, A.</au><au>Annaloro, J.</au><au>Bultel, A.</au><au>Capitelli, M.</au><au>Colonna, G.</au><au>Guy, A.</au><au>Magin, T.E.</au><au>Munaf, A.</au><au>Perrin, M.Y.</au><au>Pietanza, L.D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Reduction of State-to-State to Macroscopic Models for Hypersonics</atitle><jtitle>The open plasma physics journal</jtitle><date>2014-06-27</date><risdate>2014</risdate><volume>7</volume><issue>1</issue><spage>60</spage><epage>75</epage><pages>60-75</pages><issn>1876-5343</issn><eissn>1876-5343</eissn><abstract>Four different types of macroscopic models developed for the vibration-chemistry coupling in nonequilibrium flows for re-entry applications are presented. First, using an approach based on nonequilibrium thermodynamics, global rate coefficients of dissociation of N2 and O2 under parent molecular or atomic impact and backward molecular recombination are determined. Then a Two-Level Distribution (TLD) model is developed, in which a relaxation equation for vibrational temperature is solved as in the case of multi-temperature models but with the simultaneous solution of a kinetic equation, as in the case of state-to-state models, but only for the last vibrational level. In a third approach, a multi-internal temperature model is presented to describe accurately the vibrational distribution function in using several groups of levels, within which the levels are assumed to follow a Boltzmann distribution at an internal temperature of the group. This multi-internal temperature model allows us to describe accurately the vibrational energy relaxation and dissociation processes behind a strong shock wave. Finally, a rovibrational collisional coarse-grain model is developed to reduce a detailed rovibrational mechanism for the internal energy excitation and dissociation processes behind a strong shock wave in a nitrogen flow.</abstract><pub>Bentham Open</pub><doi>10.2174/1876534301407010060</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0003-3662-4651</orcidid><orcidid>https://orcid.org/0000-0003-4792-9995</orcidid><orcidid>https://orcid.org/0000-0002-9205-5273</orcidid><orcidid>https://orcid.org/0000-0002-4376-1518</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1876-5343 |
ispartof | The open plasma physics journal, 2014-06, Vol.7 (1), p.60-75 |
issn | 1876-5343 1876-5343 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_01866287v1 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Engineering Sciences Plasmas |
title | Reduction of State-to-State to Macroscopic Models for Hypersonics |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-13T09%3A46%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Reduction%20of%20State-to-State%20to%20Macroscopic%20Models%20for%20Hypersonics&rft.jtitle=The%20open%20plasma%20physics%20journal&rft.au=Bourdon,%20A.&rft.date=2014-06-27&rft.volume=7&rft.issue=1&rft.spage=60&rft.epage=75&rft.pages=60-75&rft.issn=1876-5343&rft.eissn=1876-5343&rft_id=info:doi/10.2174/1876534301407010060&rft_dat=%3Chal_cross%3Eoai_HAL_hal_01866287v1%3C/hal_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |