Detection of Short-Waved Spin Waves in Individual Microscopic Spin-Wave Waveguides Using the Inverse Spin Hall Effect

The miniaturization of complementary metal–oxide–semiconductor (CMOS) devices becomes increasingly difficult due to fundamental limitations and the increase of leakage currents. Large research efforts are devoted to find alternative concepts that allow for a larger data-density and lower power consu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nano letters 2017-12, Vol.17 (12), p.7234-7241
Hauptverfasser: Brächer, T, Fabre, M, Meyer, T, Fischer, T, Auffret, S, Boulle, O, Ebels, U, Pirro, P, Gaudin, G
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 7241
container_issue 12
container_start_page 7234
container_title Nano letters
container_volume 17
creator Brächer, T
Fabre, M
Meyer, T
Fischer, T
Auffret, S
Boulle, O
Ebels, U
Pirro, P
Gaudin, G
description The miniaturization of complementary metal–oxide–semiconductor (CMOS) devices becomes increasingly difficult due to fundamental limitations and the increase of leakage currents. Large research efforts are devoted to find alternative concepts that allow for a larger data-density and lower power consumption than conventional semiconductor approaches. Spin waves have been identified as a potential technology that can complement and outperform CMOS in complex logic applications, profiting from the fact that these waves enable wave computing on the nanoscale. The practical application of spin waves, however, requires the demonstration of scalable, CMOS compatible spin-wave detection schemes in material systems compatible with standard spintronics as well as semiconductor circuitry. Here, we report on the wave-vector independent detection of short-waved spin waves with wavelengths down to 150 nm by the inverse spin Hall effect in spin-wave waveguides made from ultrathin Ta/Co8Fe72B20/MgO. These findings open up the path for miniaturized scalable interconnects between spin waves and CMOS and the use of ultrathin films made from standard spintronic materials in magnonics.
doi_str_mv 10.1021/acs.nanolett.7b02458
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01863993v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1966245308</sourcerecordid><originalsourceid>FETCH-LOGICAL-a448t-b6009d2ad4a83c1b726329d363f16c880fe111a71a50b0508ac1d28766319e9e3</originalsourceid><addsrcrecordid>eNp9kcFPwyAYxYnROJ3-B8b0qIdOvtIyOBqdbsmMh2k8EgrUsXRllnaJ_7103Xb0xAv5vffB9xC6ATwCnMCDVH5UycqVpmlG4xwnacZO0AVkBMeU8-T0qFk6QJferzDGnGT4HA0SDiljmF2g9tk0RjXWVZErosXS1U38JbdGR4uNraJO-iiIWaXt1upWltGbVbXzym2s2kE7fkd-t1YH_NPb6jtqlia4tqb2ps-ayrKMJkURxl2hs0KW3lzvzyH6fJl8PE3j-fvr7OlxHss0ZU2c0_BinUidSkYU5OOEkoRrQkkBVIUPFAYA5BhkhnOcYSYV6ISNKSXADTdkiO773KUsxaa2a1n_CietmD7ORXeHgVHCOdlCYO96dlO7n9b4RqytV6YsZWVc6wVwSsOOCWYBTXu0W4SvTXHMBiy6ckQoRxzKEftygu12P6HN10YfTYc2AoB7oLOvXFtXYTn_Z_4B46udxQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1966245308</pqid></control><display><type>article</type><title>Detection of Short-Waved Spin Waves in Individual Microscopic Spin-Wave Waveguides Using the Inverse Spin Hall Effect</title><source>American Chemical Society Journals</source><creator>Brächer, T ; Fabre, M ; Meyer, T ; Fischer, T ; Auffret, S ; Boulle, O ; Ebels, U ; Pirro, P ; Gaudin, G</creator><creatorcontrib>Brächer, T ; Fabre, M ; Meyer, T ; Fischer, T ; Auffret, S ; Boulle, O ; Ebels, U ; Pirro, P ; Gaudin, G</creatorcontrib><description>The miniaturization of complementary metal–oxide–semiconductor (CMOS) devices becomes increasingly difficult due to fundamental limitations and the increase of leakage currents. Large research efforts are devoted to find alternative concepts that allow for a larger data-density and lower power consumption than conventional semiconductor approaches. Spin waves have been identified as a potential technology that can complement and outperform CMOS in complex logic applications, profiting from the fact that these waves enable wave computing on the nanoscale. The practical application of spin waves, however, requires the demonstration of scalable, CMOS compatible spin-wave detection schemes in material systems compatible with standard spintronics as well as semiconductor circuitry. Here, we report on the wave-vector independent detection of short-waved spin waves with wavelengths down to 150 nm by the inverse spin Hall effect in spin-wave waveguides made from ultrathin Ta/Co8Fe72B20/MgO. These findings open up the path for miniaturized scalable interconnects between spin waves and CMOS and the use of ultrathin films made from standard spintronic materials in magnonics.</description><identifier>ISSN: 1530-6984</identifier><identifier>EISSN: 1530-6992</identifier><identifier>DOI: 10.1021/acs.nanolett.7b02458</identifier><identifier>PMID: 29148808</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Condensed Matter ; Other ; Physics</subject><ispartof>Nano letters, 2017-12, Vol.17 (12), p.7234-7241</ispartof><rights>Copyright © 2017 American Chemical Society</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a448t-b6009d2ad4a83c1b726329d363f16c880fe111a71a50b0508ac1d28766319e9e3</citedby><cites>FETCH-LOGICAL-a448t-b6009d2ad4a83c1b726329d363f16c880fe111a71a50b0508ac1d28766319e9e3</cites><orcidid>0000-0003-0471-4150 ; 0000-0002-8538-7907</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.nanolett.7b02458$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.nanolett.7b02458$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,776,780,881,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29148808$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-01863993$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Brächer, T</creatorcontrib><creatorcontrib>Fabre, M</creatorcontrib><creatorcontrib>Meyer, T</creatorcontrib><creatorcontrib>Fischer, T</creatorcontrib><creatorcontrib>Auffret, S</creatorcontrib><creatorcontrib>Boulle, O</creatorcontrib><creatorcontrib>Ebels, U</creatorcontrib><creatorcontrib>Pirro, P</creatorcontrib><creatorcontrib>Gaudin, G</creatorcontrib><title>Detection of Short-Waved Spin Waves in Individual Microscopic Spin-Wave Waveguides Using the Inverse Spin Hall Effect</title><title>Nano letters</title><addtitle>Nano Lett</addtitle><description>The miniaturization of complementary metal–oxide–semiconductor (CMOS) devices becomes increasingly difficult due to fundamental limitations and the increase of leakage currents. Large research efforts are devoted to find alternative concepts that allow for a larger data-density and lower power consumption than conventional semiconductor approaches. Spin waves have been identified as a potential technology that can complement and outperform CMOS in complex logic applications, profiting from the fact that these waves enable wave computing on the nanoscale. The practical application of spin waves, however, requires the demonstration of scalable, CMOS compatible spin-wave detection schemes in material systems compatible with standard spintronics as well as semiconductor circuitry. Here, we report on the wave-vector independent detection of short-waved spin waves with wavelengths down to 150 nm by the inverse spin Hall effect in spin-wave waveguides made from ultrathin Ta/Co8Fe72B20/MgO. These findings open up the path for miniaturized scalable interconnects between spin waves and CMOS and the use of ultrathin films made from standard spintronic materials in magnonics.</description><subject>Condensed Matter</subject><subject>Other</subject><subject>Physics</subject><issn>1530-6984</issn><issn>1530-6992</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9kcFPwyAYxYnROJ3-B8b0qIdOvtIyOBqdbsmMh2k8EgrUsXRllnaJ_7103Xb0xAv5vffB9xC6ATwCnMCDVH5UycqVpmlG4xwnacZO0AVkBMeU8-T0qFk6QJferzDGnGT4HA0SDiljmF2g9tk0RjXWVZErosXS1U38JbdGR4uNraJO-iiIWaXt1upWltGbVbXzym2s2kE7fkd-t1YH_NPb6jtqlia4tqb2ps-ayrKMJkURxl2hs0KW3lzvzyH6fJl8PE3j-fvr7OlxHss0ZU2c0_BinUidSkYU5OOEkoRrQkkBVIUPFAYA5BhkhnOcYSYV6ISNKSXADTdkiO773KUsxaa2a1n_CietmD7ORXeHgVHCOdlCYO96dlO7n9b4RqytV6YsZWVc6wVwSsOOCWYBTXu0W4SvTXHMBiy6ckQoRxzKEftygu12P6HN10YfTYc2AoB7oLOvXFtXYTn_Z_4B46udxQ</recordid><startdate>20171213</startdate><enddate>20171213</enddate><creator>Brächer, T</creator><creator>Fabre, M</creator><creator>Meyer, T</creator><creator>Fischer, T</creator><creator>Auffret, S</creator><creator>Boulle, O</creator><creator>Ebels, U</creator><creator>Pirro, P</creator><creator>Gaudin, G</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0003-0471-4150</orcidid><orcidid>https://orcid.org/0000-0002-8538-7907</orcidid></search><sort><creationdate>20171213</creationdate><title>Detection of Short-Waved Spin Waves in Individual Microscopic Spin-Wave Waveguides Using the Inverse Spin Hall Effect</title><author>Brächer, T ; Fabre, M ; Meyer, T ; Fischer, T ; Auffret, S ; Boulle, O ; Ebels, U ; Pirro, P ; Gaudin, G</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a448t-b6009d2ad4a83c1b726329d363f16c880fe111a71a50b0508ac1d28766319e9e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Condensed Matter</topic><topic>Other</topic><topic>Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Brächer, T</creatorcontrib><creatorcontrib>Fabre, M</creatorcontrib><creatorcontrib>Meyer, T</creatorcontrib><creatorcontrib>Fischer, T</creatorcontrib><creatorcontrib>Auffret, S</creatorcontrib><creatorcontrib>Boulle, O</creatorcontrib><creatorcontrib>Ebels, U</creatorcontrib><creatorcontrib>Pirro, P</creatorcontrib><creatorcontrib>Gaudin, G</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Nano letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Brächer, T</au><au>Fabre, M</au><au>Meyer, T</au><au>Fischer, T</au><au>Auffret, S</au><au>Boulle, O</au><au>Ebels, U</au><au>Pirro, P</au><au>Gaudin, G</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Detection of Short-Waved Spin Waves in Individual Microscopic Spin-Wave Waveguides Using the Inverse Spin Hall Effect</atitle><jtitle>Nano letters</jtitle><addtitle>Nano Lett</addtitle><date>2017-12-13</date><risdate>2017</risdate><volume>17</volume><issue>12</issue><spage>7234</spage><epage>7241</epage><pages>7234-7241</pages><issn>1530-6984</issn><eissn>1530-6992</eissn><abstract>The miniaturization of complementary metal–oxide–semiconductor (CMOS) devices becomes increasingly difficult due to fundamental limitations and the increase of leakage currents. Large research efforts are devoted to find alternative concepts that allow for a larger data-density and lower power consumption than conventional semiconductor approaches. Spin waves have been identified as a potential technology that can complement and outperform CMOS in complex logic applications, profiting from the fact that these waves enable wave computing on the nanoscale. The practical application of spin waves, however, requires the demonstration of scalable, CMOS compatible spin-wave detection schemes in material systems compatible with standard spintronics as well as semiconductor circuitry. Here, we report on the wave-vector independent detection of short-waved spin waves with wavelengths down to 150 nm by the inverse spin Hall effect in spin-wave waveguides made from ultrathin Ta/Co8Fe72B20/MgO. These findings open up the path for miniaturized scalable interconnects between spin waves and CMOS and the use of ultrathin films made from standard spintronic materials in magnonics.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>29148808</pmid><doi>10.1021/acs.nanolett.7b02458</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-0471-4150</orcidid><orcidid>https://orcid.org/0000-0002-8538-7907</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1530-6984
ispartof Nano letters, 2017-12, Vol.17 (12), p.7234-7241
issn 1530-6984
1530-6992
language eng
recordid cdi_hal_primary_oai_HAL_hal_01863993v1
source American Chemical Society Journals
subjects Condensed Matter
Other
Physics
title Detection of Short-Waved Spin Waves in Individual Microscopic Spin-Wave Waveguides Using the Inverse Spin Hall Effect
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T23%3A45%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Detection%20of%20Short-Waved%20Spin%20Waves%20in%20Individual%20Microscopic%20Spin-Wave%20Waveguides%20Using%20the%20Inverse%20Spin%20Hall%20Effect&rft.jtitle=Nano%20letters&rft.au=Bra%CC%88cher,%20T&rft.date=2017-12-13&rft.volume=17&rft.issue=12&rft.spage=7234&rft.epage=7241&rft.pages=7234-7241&rft.issn=1530-6984&rft.eissn=1530-6992&rft_id=info:doi/10.1021/acs.nanolett.7b02458&rft_dat=%3Cproquest_hal_p%3E1966245308%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1966245308&rft_id=info:pmid/29148808&rfr_iscdi=true