Influence of spatial information resolution on the relation between elevation and temperature

The association between elevation and temperature is analysed by simple linear correlations across several spatial scales. The minimum (tn) and maximum (tx) temperatures (response variables), expressed at two time scales (monthly and daily), are observed for 102 weather stations in east central Fran...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of climatology 2018-12, Vol.38 (15), p.5677-5688
Hauptverfasser: Joly, Daniel, Castel, Thierry, Pohl, Benjamin, Richard, Yves
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5688
container_issue 15
container_start_page 5677
container_title International journal of climatology
container_volume 38
creator Joly, Daniel
Castel, Thierry
Pohl, Benjamin
Richard, Yves
description The association between elevation and temperature is analysed by simple linear correlations across several spatial scales. The minimum (tn) and maximum (tx) temperatures (response variables), expressed at two time scales (monthly and daily), are observed for 102 weather stations in east central France from 1980 to 2014 (12,784 days). Elevation (explanatory variable) is provided at 10 resolutions: 50, 100, 200, 500 m, 1, 2, 4, 8, 12, and 16 km. The coefficient of determination, R2, is used to determine which resolution gives the best results. The slope given by the regression is used to assess the drop in temperature per unit of elevation (temperature lapse rate [TLR]). In most situations, monthly and daily temperatures are optimally explained by the finest (50 m) resolution: the R2 is, respectively, 0.53 and 0.24 for tn and 0.78 and 0.39 for tx. The coarser resolutions produce results of much lower quality. However, in one circumstance (monthly mean of tn), the highest R2 value is obtained for the 4‐km resolution, which is a meaningful result as current regional climate models now achieve similar resolutions. Both monthly and daily TLRs of tn and tx are, on average, slightly lower than −0.5 °C/100 m at 50‐m resolution. The TLR decreases with resolution: it is only −0.23 °C/100 m for tn and −0.13 °C/100 m for tx at 16‐km resolution. Other insightful results involve the influence of the topographical context, which shows some additional effect with that of elevation and which was quantified through partial correlations. Influence of DEM spatial resolution on the altidunal temperature lapse rate.
doi_str_mv 10.1002/joc.5771
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01863415v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2140825072</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3271-4f408bd27229ca6a9c1ef039596566a51dc9f723f8213993e2c94a5f2b8530ef3</originalsourceid><addsrcrecordid>eNp1kE1LAzEQhoMoWKvgT1jwooet-djsJsdS1FYKvehRQppO6JZ0U5Pdlv570654EwZmeOeZd4ZB6J7gEcGYPm-8GfGqIhdoQLCscoyFuEQDLKTMRUHENbqJcYMxlpKUA_Q1a6zroDGQeZvFnW5r7bK6sT5sU-2bLED0rjuXKdo1JMX1rSW0B4AmAwf7XtHNKmthu4Og2y7ALbqy2kW4-81D9Pn68jGZ5vPF22wynueG0YrkhS2wWK5oRak0utTSELCYSS5LXpaak5WRtqLMCkqYlAyokYXmli4FZxgsG6Kn3netndqFeqvDUXldq-l4rk4aJqJkBeF7ktiHnt0F_91BbNXGd6FJ5ylK0h2U47RqiB57ygQfYwD7Z0uwOj06TRl1enRC8x491A6O_3LqfTE58z_VOH58</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2140825072</pqid></control><display><type>article</type><title>Influence of spatial information resolution on the relation between elevation and temperature</title><source>Wiley-Blackwell Journals</source><creator>Joly, Daniel ; Castel, Thierry ; Pohl, Benjamin ; Richard, Yves</creator><creatorcontrib>Joly, Daniel ; Castel, Thierry ; Pohl, Benjamin ; Richard, Yves</creatorcontrib><description>The association between elevation and temperature is analysed by simple linear correlations across several spatial scales. The minimum (tn) and maximum (tx) temperatures (response variables), expressed at two time scales (monthly and daily), are observed for 102 weather stations in east central France from 1980 to 2014 (12,784 days). Elevation (explanatory variable) is provided at 10 resolutions: 50, 100, 200, 500 m, 1, 2, 4, 8, 12, and 16 km. The coefficient of determination, R2, is used to determine which resolution gives the best results. The slope given by the regression is used to assess the drop in temperature per unit of elevation (temperature lapse rate [TLR]). In most situations, monthly and daily temperatures are optimally explained by the finest (50 m) resolution: the R2 is, respectively, 0.53 and 0.24 for tn and 0.78 and 0.39 for tx. The coarser resolutions produce results of much lower quality. However, in one circumstance (monthly mean of tn), the highest R2 value is obtained for the 4‐km resolution, which is a meaningful result as current regional climate models now achieve similar resolutions. Both monthly and daily TLRs of tn and tx are, on average, slightly lower than −0.5 °C/100 m at 50‐m resolution. The TLR decreases with resolution: it is only −0.23 °C/100 m for tn and −0.13 °C/100 m for tx at 16‐km resolution. Other insightful results involve the influence of the topographical context, which shows some additional effect with that of elevation and which was quantified through partial correlations. Influence of DEM spatial resolution on the altidunal temperature lapse rate.</description><identifier>ISSN: 0899-8418</identifier><identifier>EISSN: 1097-0088</identifier><identifier>DOI: 10.1002/joc.5771</identifier><language>eng</language><publisher>Chichester, UK: John Wiley &amp; Sons, Ltd</publisher><subject>Climate models ; Climatology ; Correlation ; Correlation analysis ; Daily temperatures ; digital elevation model ; Earth Sciences ; Elevation ; Environmental Sciences ; France ; Geography ; Global Changes ; Humanities and Social Sciences ; Lapse rate ; Regional climate models ; Regional climates ; Regression analysis ; Resolution ; Sciences of the Universe ; Spatial data ; spatial resolution ; Temperature ; Temperature effects ; Weather stations</subject><ispartof>International journal of climatology, 2018-12, Vol.38 (15), p.5677-5688</ispartof><rights>2018 Royal Meteorological Society</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3271-4f408bd27229ca6a9c1ef039596566a51dc9f723f8213993e2c94a5f2b8530ef3</citedby><cites>FETCH-LOGICAL-c3271-4f408bd27229ca6a9c1ef039596566a51dc9f723f8213993e2c94a5f2b8530ef3</cites><orcidid>0000-0002-4817-1779 ; 0000-0002-9339-797X ; 0000-0002-9203-0922 ; 0000-0001-9650-9474</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjoc.5771$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjoc.5771$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,780,784,885,1416,27922,27923,45572,45573</link.rule.ids><backlink>$$Uhttps://hal.science/hal-01863415$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Joly, Daniel</creatorcontrib><creatorcontrib>Castel, Thierry</creatorcontrib><creatorcontrib>Pohl, Benjamin</creatorcontrib><creatorcontrib>Richard, Yves</creatorcontrib><title>Influence of spatial information resolution on the relation between elevation and temperature</title><title>International journal of climatology</title><description>The association between elevation and temperature is analysed by simple linear correlations across several spatial scales. The minimum (tn) and maximum (tx) temperatures (response variables), expressed at two time scales (monthly and daily), are observed for 102 weather stations in east central France from 1980 to 2014 (12,784 days). Elevation (explanatory variable) is provided at 10 resolutions: 50, 100, 200, 500 m, 1, 2, 4, 8, 12, and 16 km. The coefficient of determination, R2, is used to determine which resolution gives the best results. The slope given by the regression is used to assess the drop in temperature per unit of elevation (temperature lapse rate [TLR]). In most situations, monthly and daily temperatures are optimally explained by the finest (50 m) resolution: the R2 is, respectively, 0.53 and 0.24 for tn and 0.78 and 0.39 for tx. The coarser resolutions produce results of much lower quality. However, in one circumstance (monthly mean of tn), the highest R2 value is obtained for the 4‐km resolution, which is a meaningful result as current regional climate models now achieve similar resolutions. Both monthly and daily TLRs of tn and tx are, on average, slightly lower than −0.5 °C/100 m at 50‐m resolution. The TLR decreases with resolution: it is only −0.23 °C/100 m for tn and −0.13 °C/100 m for tx at 16‐km resolution. Other insightful results involve the influence of the topographical context, which shows some additional effect with that of elevation and which was quantified through partial correlations. Influence of DEM spatial resolution on the altidunal temperature lapse rate.</description><subject>Climate models</subject><subject>Climatology</subject><subject>Correlation</subject><subject>Correlation analysis</subject><subject>Daily temperatures</subject><subject>digital elevation model</subject><subject>Earth Sciences</subject><subject>Elevation</subject><subject>Environmental Sciences</subject><subject>France</subject><subject>Geography</subject><subject>Global Changes</subject><subject>Humanities and Social Sciences</subject><subject>Lapse rate</subject><subject>Regional climate models</subject><subject>Regional climates</subject><subject>Regression analysis</subject><subject>Resolution</subject><subject>Sciences of the Universe</subject><subject>Spatial data</subject><subject>spatial resolution</subject><subject>Temperature</subject><subject>Temperature effects</subject><subject>Weather stations</subject><issn>0899-8418</issn><issn>1097-0088</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kE1LAzEQhoMoWKvgT1jwooet-djsJsdS1FYKvehRQppO6JZ0U5Pdlv570654EwZmeOeZd4ZB6J7gEcGYPm-8GfGqIhdoQLCscoyFuEQDLKTMRUHENbqJcYMxlpKUA_Q1a6zroDGQeZvFnW5r7bK6sT5sU-2bLED0rjuXKdo1JMX1rSW0B4AmAwf7XtHNKmthu4Og2y7ALbqy2kW4-81D9Pn68jGZ5vPF22wynueG0YrkhS2wWK5oRak0utTSELCYSS5LXpaak5WRtqLMCkqYlAyokYXmli4FZxgsG6Kn3netndqFeqvDUXldq-l4rk4aJqJkBeF7ktiHnt0F_91BbNXGd6FJ5ylK0h2U47RqiB57ygQfYwD7Z0uwOj06TRl1enRC8x491A6O_3LqfTE58z_VOH58</recordid><startdate>201812</startdate><enddate>201812</enddate><creator>Joly, Daniel</creator><creator>Castel, Thierry</creator><creator>Pohl, Benjamin</creator><creator>Richard, Yves</creator><general>John Wiley &amp; Sons, Ltd</general><general>Wiley Subscription Services, Inc</general><general>Wiley</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>7TN</scope><scope>F1W</scope><scope>H96</scope><scope>KL.</scope><scope>L.G</scope><scope>1XC</scope><scope>BXJBU</scope><orcidid>https://orcid.org/0000-0002-4817-1779</orcidid><orcidid>https://orcid.org/0000-0002-9339-797X</orcidid><orcidid>https://orcid.org/0000-0002-9203-0922</orcidid><orcidid>https://orcid.org/0000-0001-9650-9474</orcidid></search><sort><creationdate>201812</creationdate><title>Influence of spatial information resolution on the relation between elevation and temperature</title><author>Joly, Daniel ; Castel, Thierry ; Pohl, Benjamin ; Richard, Yves</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3271-4f408bd27229ca6a9c1ef039596566a51dc9f723f8213993e2c94a5f2b8530ef3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Climate models</topic><topic>Climatology</topic><topic>Correlation</topic><topic>Correlation analysis</topic><topic>Daily temperatures</topic><topic>digital elevation model</topic><topic>Earth Sciences</topic><topic>Elevation</topic><topic>Environmental Sciences</topic><topic>France</topic><topic>Geography</topic><topic>Global Changes</topic><topic>Humanities and Social Sciences</topic><topic>Lapse rate</topic><topic>Regional climate models</topic><topic>Regional climates</topic><topic>Regression analysis</topic><topic>Resolution</topic><topic>Sciences of the Universe</topic><topic>Spatial data</topic><topic>spatial resolution</topic><topic>Temperature</topic><topic>Temperature effects</topic><topic>Weather stations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Joly, Daniel</creatorcontrib><creatorcontrib>Castel, Thierry</creatorcontrib><creatorcontrib>Pohl, Benjamin</creatorcontrib><creatorcontrib>Richard, Yves</creatorcontrib><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>HAL-SHS: Archive ouverte en Sciences de l'Homme et de la Société</collection><jtitle>International journal of climatology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Joly, Daniel</au><au>Castel, Thierry</au><au>Pohl, Benjamin</au><au>Richard, Yves</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Influence of spatial information resolution on the relation between elevation and temperature</atitle><jtitle>International journal of climatology</jtitle><date>2018-12</date><risdate>2018</risdate><volume>38</volume><issue>15</issue><spage>5677</spage><epage>5688</epage><pages>5677-5688</pages><issn>0899-8418</issn><eissn>1097-0088</eissn><abstract>The association between elevation and temperature is analysed by simple linear correlations across several spatial scales. The minimum (tn) and maximum (tx) temperatures (response variables), expressed at two time scales (monthly and daily), are observed for 102 weather stations in east central France from 1980 to 2014 (12,784 days). Elevation (explanatory variable) is provided at 10 resolutions: 50, 100, 200, 500 m, 1, 2, 4, 8, 12, and 16 km. The coefficient of determination, R2, is used to determine which resolution gives the best results. The slope given by the regression is used to assess the drop in temperature per unit of elevation (temperature lapse rate [TLR]). In most situations, monthly and daily temperatures are optimally explained by the finest (50 m) resolution: the R2 is, respectively, 0.53 and 0.24 for tn and 0.78 and 0.39 for tx. The coarser resolutions produce results of much lower quality. However, in one circumstance (monthly mean of tn), the highest R2 value is obtained for the 4‐km resolution, which is a meaningful result as current regional climate models now achieve similar resolutions. Both monthly and daily TLRs of tn and tx are, on average, slightly lower than −0.5 °C/100 m at 50‐m resolution. The TLR decreases with resolution: it is only −0.23 °C/100 m for tn and −0.13 °C/100 m for tx at 16‐km resolution. Other insightful results involve the influence of the topographical context, which shows some additional effect with that of elevation and which was quantified through partial correlations. Influence of DEM spatial resolution on the altidunal temperature lapse rate.</abstract><cop>Chichester, UK</cop><pub>John Wiley &amp; Sons, Ltd</pub><doi>10.1002/joc.5771</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-4817-1779</orcidid><orcidid>https://orcid.org/0000-0002-9339-797X</orcidid><orcidid>https://orcid.org/0000-0002-9203-0922</orcidid><orcidid>https://orcid.org/0000-0001-9650-9474</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0899-8418
ispartof International journal of climatology, 2018-12, Vol.38 (15), p.5677-5688
issn 0899-8418
1097-0088
language eng
recordid cdi_hal_primary_oai_HAL_hal_01863415v1
source Wiley-Blackwell Journals
subjects Climate models
Climatology
Correlation
Correlation analysis
Daily temperatures
digital elevation model
Earth Sciences
Elevation
Environmental Sciences
France
Geography
Global Changes
Humanities and Social Sciences
Lapse rate
Regional climate models
Regional climates
Regression analysis
Resolution
Sciences of the Universe
Spatial data
spatial resolution
Temperature
Temperature effects
Weather stations
title Influence of spatial information resolution on the relation between elevation and temperature
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T16%3A24%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Influence%20of%20spatial%20information%20resolution%20on%20the%20relation%20between%20elevation%20and%20temperature&rft.jtitle=International%20journal%20of%20climatology&rft.au=Joly,%20Daniel&rft.date=2018-12&rft.volume=38&rft.issue=15&rft.spage=5677&rft.epage=5688&rft.pages=5677-5688&rft.issn=0899-8418&rft.eissn=1097-0088&rft_id=info:doi/10.1002/joc.5771&rft_dat=%3Cproquest_hal_p%3E2140825072%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2140825072&rft_id=info:pmid/&rfr_iscdi=true