Statistical tests of heterogeneity for anisotropic multifractional Brownian fields
In this paper, we deal with some anisotropic extensions of the multifractional Brownian fields that account for spatial phenomena whose properties of regularity and directionality may both vary in space. Our aim is to set statistical tests to decide whether an observed field of this kind is heteroge...
Gespeichert in:
Veröffentlicht in: | Stochastic processes and their applications 2020-08, Vol.130 (8), p.4667-4692 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4692 |
---|---|
container_issue | 8 |
container_start_page | 4667 |
container_title | Stochastic processes and their applications |
container_volume | 130 |
creator | Vu, Huong T.L. Richard, Frédéric J.P. |
description | In this paper, we deal with some anisotropic extensions of the multifractional Brownian fields that account for spatial phenomena whose properties of regularity and directionality may both vary in space. Our aim is to set statistical tests to decide whether an observed field of this kind is heterogeneous or not. The statistical methodology relies upon a field analysis by quadratic variations, which are averages of square field increments. Specific to our approach, these variations are computed locally in several directions. We establish an asymptotic result showing a linear Gaussian relationship between these variations and parameters related to regularity and directional properties of the model. Using this result, we then design a test procedure based on Fisher statistics of linear Gaussian models. Eventually we evaluate this procedure on simulated data. |
doi_str_mv | 10.1016/j.spa.2020.01.012 |
format | Article |
fullrecord | <record><control><sourceid>hal_cross</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01863377v2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0304414918303430</els_id><sourcerecordid>oai_HAL_hal_01863377v2</sourcerecordid><originalsourceid>FETCH-LOGICAL-c374t-564a885bc2ccdb07312e4b57573f4b61684ecd122e00e99daefa09713c0315a43</originalsourceid><addsrcrecordid>eNp9kFtLAzEQhYMoWKs_wLd99WHXyWVv-FSLWqEgeAHfQpqd2JTtpiRR6b83S8VH4cDAcL5hziHkkkJBgVbXmyLsVMGAQQE0iR2RCW3qNmfQvh-TCXAQuaCiPSVnIWwAkoXRCXl-iSraEK1WfRYxxJA5k60xoncfOKCN-8w4n6nBBhe921mdbT_7aI1XOlo3JOzWu-_BqiEzFvsunJMTo_qAF79zSt7u717ni3z59PA4ny1zzWsR87ISqmnKlWZadyuoOWUoVmVd1tyIVUWrRqDu0pcIgG3bKTQK2ppyDZyWSvApuTrcXate7rzdKr-XTlm5mC3luAPaVJzX9RdLXnrwau9C8Gj-AApyLFBuZCpQjgUmLmlkbg4MphBfFr0M2uKgsbMedZSds__QP4ZKeZY</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Statistical tests of heterogeneity for anisotropic multifractional Brownian fields</title><source>Access via ScienceDirect (Elsevier)</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Vu, Huong T.L. ; Richard, Frédéric J.P.</creator><creatorcontrib>Vu, Huong T.L. ; Richard, Frédéric J.P.</creatorcontrib><description>In this paper, we deal with some anisotropic extensions of the multifractional Brownian fields that account for spatial phenomena whose properties of regularity and directionality may both vary in space. Our aim is to set statistical tests to decide whether an observed field of this kind is heterogeneous or not. The statistical methodology relies upon a field analysis by quadratic variations, which are averages of square field increments. Specific to our approach, these variations are computed locally in several directions. We establish an asymptotic result showing a linear Gaussian relationship between these variations and parameters related to regularity and directional properties of the model. Using this result, we then design a test procedure based on Fisher statistics of linear Gaussian models. Eventually we evaluate this procedure on simulated data.</description><identifier>ISSN: 0304-4149</identifier><identifier>EISSN: 1879-209X</identifier><identifier>DOI: 10.1016/j.spa.2020.01.012</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Anisotropic fractional Brownian field ; Anisotropy ; Applications ; Engineering Sciences ; Heterogeneity ; Methodology ; Multifractional Brownian field ; Quadratic variations ; Signal and Image processing ; Statistical test ; Statistics ; Statistics Theory</subject><ispartof>Stochastic processes and their applications, 2020-08, Vol.130 (8), p.4667-4692</ispartof><rights>2020 Elsevier B.V.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c374t-564a885bc2ccdb07312e4b57573f4b61684ecd122e00e99daefa09713c0315a43</citedby><cites>FETCH-LOGICAL-c374t-564a885bc2ccdb07312e4b57573f4b61684ecd122e00e99daefa09713c0315a43</cites><orcidid>0000-0001-5146-9894</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.spa.2020.01.012$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://hal.science/hal-01863377$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Vu, Huong T.L.</creatorcontrib><creatorcontrib>Richard, Frédéric J.P.</creatorcontrib><title>Statistical tests of heterogeneity for anisotropic multifractional Brownian fields</title><title>Stochastic processes and their applications</title><description>In this paper, we deal with some anisotropic extensions of the multifractional Brownian fields that account for spatial phenomena whose properties of regularity and directionality may both vary in space. Our aim is to set statistical tests to decide whether an observed field of this kind is heterogeneous or not. The statistical methodology relies upon a field analysis by quadratic variations, which are averages of square field increments. Specific to our approach, these variations are computed locally in several directions. We establish an asymptotic result showing a linear Gaussian relationship between these variations and parameters related to regularity and directional properties of the model. Using this result, we then design a test procedure based on Fisher statistics of linear Gaussian models. Eventually we evaluate this procedure on simulated data.</description><subject>Anisotropic fractional Brownian field</subject><subject>Anisotropy</subject><subject>Applications</subject><subject>Engineering Sciences</subject><subject>Heterogeneity</subject><subject>Methodology</subject><subject>Multifractional Brownian field</subject><subject>Quadratic variations</subject><subject>Signal and Image processing</subject><subject>Statistical test</subject><subject>Statistics</subject><subject>Statistics Theory</subject><issn>0304-4149</issn><issn>1879-209X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kFtLAzEQhYMoWKs_wLd99WHXyWVv-FSLWqEgeAHfQpqd2JTtpiRR6b83S8VH4cDAcL5hziHkkkJBgVbXmyLsVMGAQQE0iR2RCW3qNmfQvh-TCXAQuaCiPSVnIWwAkoXRCXl-iSraEK1WfRYxxJA5k60xoncfOKCN-8w4n6nBBhe921mdbT_7aI1XOlo3JOzWu-_BqiEzFvsunJMTo_qAF79zSt7u717ni3z59PA4ny1zzWsR87ISqmnKlWZadyuoOWUoVmVd1tyIVUWrRqDu0pcIgG3bKTQK2ppyDZyWSvApuTrcXate7rzdKr-XTlm5mC3luAPaVJzX9RdLXnrwau9C8Gj-AApyLFBuZCpQjgUmLmlkbg4MphBfFr0M2uKgsbMedZSds__QP4ZKeZY</recordid><startdate>20200801</startdate><enddate>20200801</enddate><creator>Vu, Huong T.L.</creator><creator>Richard, Frédéric J.P.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0001-5146-9894</orcidid></search><sort><creationdate>20200801</creationdate><title>Statistical tests of heterogeneity for anisotropic multifractional Brownian fields</title><author>Vu, Huong T.L. ; Richard, Frédéric J.P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c374t-564a885bc2ccdb07312e4b57573f4b61684ecd122e00e99daefa09713c0315a43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Anisotropic fractional Brownian field</topic><topic>Anisotropy</topic><topic>Applications</topic><topic>Engineering Sciences</topic><topic>Heterogeneity</topic><topic>Methodology</topic><topic>Multifractional Brownian field</topic><topic>Quadratic variations</topic><topic>Signal and Image processing</topic><topic>Statistical test</topic><topic>Statistics</topic><topic>Statistics Theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vu, Huong T.L.</creatorcontrib><creatorcontrib>Richard, Frédéric J.P.</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Stochastic processes and their applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vu, Huong T.L.</au><au>Richard, Frédéric J.P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Statistical tests of heterogeneity for anisotropic multifractional Brownian fields</atitle><jtitle>Stochastic processes and their applications</jtitle><date>2020-08-01</date><risdate>2020</risdate><volume>130</volume><issue>8</issue><spage>4667</spage><epage>4692</epage><pages>4667-4692</pages><issn>0304-4149</issn><eissn>1879-209X</eissn><abstract>In this paper, we deal with some anisotropic extensions of the multifractional Brownian fields that account for spatial phenomena whose properties of regularity and directionality may both vary in space. Our aim is to set statistical tests to decide whether an observed field of this kind is heterogeneous or not. The statistical methodology relies upon a field analysis by quadratic variations, which are averages of square field increments. Specific to our approach, these variations are computed locally in several directions. We establish an asymptotic result showing a linear Gaussian relationship between these variations and parameters related to regularity and directional properties of the model. Using this result, we then design a test procedure based on Fisher statistics of linear Gaussian models. Eventually we evaluate this procedure on simulated data.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.spa.2020.01.012</doi><tpages>26</tpages><orcidid>https://orcid.org/0000-0001-5146-9894</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0304-4149 |
ispartof | Stochastic processes and their applications, 2020-08, Vol.130 (8), p.4667-4692 |
issn | 0304-4149 1879-209X |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_01863377v2 |
source | Access via ScienceDirect (Elsevier); EZB-FREE-00999 freely available EZB journals |
subjects | Anisotropic fractional Brownian field Anisotropy Applications Engineering Sciences Heterogeneity Methodology Multifractional Brownian field Quadratic variations Signal and Image processing Statistical test Statistics Statistics Theory |
title | Statistical tests of heterogeneity for anisotropic multifractional Brownian fields |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T04%3A07%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Statistical%20tests%20of%20heterogeneity%20for%20anisotropic%20multifractional%20Brownian%20fields&rft.jtitle=Stochastic%20processes%20and%20their%20applications&rft.au=Vu,%20Huong%20T.L.&rft.date=2020-08-01&rft.volume=130&rft.issue=8&rft.spage=4667&rft.epage=4692&rft.pages=4667-4692&rft.issn=0304-4149&rft.eissn=1879-209X&rft_id=info:doi/10.1016/j.spa.2020.01.012&rft_dat=%3Chal_cross%3Eoai_HAL_hal_01863377v2%3C/hal_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0304414918303430&rfr_iscdi=true |