Statistical tests of heterogeneity for anisotropic multifractional Brownian fields

In this paper, we deal with some anisotropic extensions of the multifractional Brownian fields that account for spatial phenomena whose properties of regularity and directionality may both vary in space. Our aim is to set statistical tests to decide whether an observed field of this kind is heteroge...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Stochastic processes and their applications 2020-08, Vol.130 (8), p.4667-4692
Hauptverfasser: Vu, Huong T.L., Richard, Frédéric J.P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4692
container_issue 8
container_start_page 4667
container_title Stochastic processes and their applications
container_volume 130
creator Vu, Huong T.L.
Richard, Frédéric J.P.
description In this paper, we deal with some anisotropic extensions of the multifractional Brownian fields that account for spatial phenomena whose properties of regularity and directionality may both vary in space. Our aim is to set statistical tests to decide whether an observed field of this kind is heterogeneous or not. The statistical methodology relies upon a field analysis by quadratic variations, which are averages of square field increments. Specific to our approach, these variations are computed locally in several directions. We establish an asymptotic result showing a linear Gaussian relationship between these variations and parameters related to regularity and directional properties of the model. Using this result, we then design a test procedure based on Fisher statistics of linear Gaussian models. Eventually we evaluate this procedure on simulated data.
doi_str_mv 10.1016/j.spa.2020.01.012
format Article
fullrecord <record><control><sourceid>hal_cross</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01863377v2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0304414918303430</els_id><sourcerecordid>oai_HAL_hal_01863377v2</sourcerecordid><originalsourceid>FETCH-LOGICAL-c374t-564a885bc2ccdb07312e4b57573f4b61684ecd122e00e99daefa09713c0315a43</originalsourceid><addsrcrecordid>eNp9kFtLAzEQhYMoWKs_wLd99WHXyWVv-FSLWqEgeAHfQpqd2JTtpiRR6b83S8VH4cDAcL5hziHkkkJBgVbXmyLsVMGAQQE0iR2RCW3qNmfQvh-TCXAQuaCiPSVnIWwAkoXRCXl-iSraEK1WfRYxxJA5k60xoncfOKCN-8w4n6nBBhe921mdbT_7aI1XOlo3JOzWu-_BqiEzFvsunJMTo_qAF79zSt7u717ni3z59PA4ny1zzWsR87ISqmnKlWZadyuoOWUoVmVd1tyIVUWrRqDu0pcIgG3bKTQK2ppyDZyWSvApuTrcXate7rzdKr-XTlm5mC3luAPaVJzX9RdLXnrwau9C8Gj-AApyLFBuZCpQjgUmLmlkbg4MphBfFr0M2uKgsbMedZSds__QP4ZKeZY</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Statistical tests of heterogeneity for anisotropic multifractional Brownian fields</title><source>Access via ScienceDirect (Elsevier)</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Vu, Huong T.L. ; Richard, Frédéric J.P.</creator><creatorcontrib>Vu, Huong T.L. ; Richard, Frédéric J.P.</creatorcontrib><description>In this paper, we deal with some anisotropic extensions of the multifractional Brownian fields that account for spatial phenomena whose properties of regularity and directionality may both vary in space. Our aim is to set statistical tests to decide whether an observed field of this kind is heterogeneous or not. The statistical methodology relies upon a field analysis by quadratic variations, which are averages of square field increments. Specific to our approach, these variations are computed locally in several directions. We establish an asymptotic result showing a linear Gaussian relationship between these variations and parameters related to regularity and directional properties of the model. Using this result, we then design a test procedure based on Fisher statistics of linear Gaussian models. Eventually we evaluate this procedure on simulated data.</description><identifier>ISSN: 0304-4149</identifier><identifier>EISSN: 1879-209X</identifier><identifier>DOI: 10.1016/j.spa.2020.01.012</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Anisotropic fractional Brownian field ; Anisotropy ; Applications ; Engineering Sciences ; Heterogeneity ; Methodology ; Multifractional Brownian field ; Quadratic variations ; Signal and Image processing ; Statistical test ; Statistics ; Statistics Theory</subject><ispartof>Stochastic processes and their applications, 2020-08, Vol.130 (8), p.4667-4692</ispartof><rights>2020 Elsevier B.V.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c374t-564a885bc2ccdb07312e4b57573f4b61684ecd122e00e99daefa09713c0315a43</citedby><cites>FETCH-LOGICAL-c374t-564a885bc2ccdb07312e4b57573f4b61684ecd122e00e99daefa09713c0315a43</cites><orcidid>0000-0001-5146-9894</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.spa.2020.01.012$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://hal.science/hal-01863377$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Vu, Huong T.L.</creatorcontrib><creatorcontrib>Richard, Frédéric J.P.</creatorcontrib><title>Statistical tests of heterogeneity for anisotropic multifractional Brownian fields</title><title>Stochastic processes and their applications</title><description>In this paper, we deal with some anisotropic extensions of the multifractional Brownian fields that account for spatial phenomena whose properties of regularity and directionality may both vary in space. Our aim is to set statistical tests to decide whether an observed field of this kind is heterogeneous or not. The statistical methodology relies upon a field analysis by quadratic variations, which are averages of square field increments. Specific to our approach, these variations are computed locally in several directions. We establish an asymptotic result showing a linear Gaussian relationship between these variations and parameters related to regularity and directional properties of the model. Using this result, we then design a test procedure based on Fisher statistics of linear Gaussian models. Eventually we evaluate this procedure on simulated data.</description><subject>Anisotropic fractional Brownian field</subject><subject>Anisotropy</subject><subject>Applications</subject><subject>Engineering Sciences</subject><subject>Heterogeneity</subject><subject>Methodology</subject><subject>Multifractional Brownian field</subject><subject>Quadratic variations</subject><subject>Signal and Image processing</subject><subject>Statistical test</subject><subject>Statistics</subject><subject>Statistics Theory</subject><issn>0304-4149</issn><issn>1879-209X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kFtLAzEQhYMoWKs_wLd99WHXyWVv-FSLWqEgeAHfQpqd2JTtpiRR6b83S8VH4cDAcL5hziHkkkJBgVbXmyLsVMGAQQE0iR2RCW3qNmfQvh-TCXAQuaCiPSVnIWwAkoXRCXl-iSraEK1WfRYxxJA5k60xoncfOKCN-8w4n6nBBhe921mdbT_7aI1XOlo3JOzWu-_BqiEzFvsunJMTo_qAF79zSt7u717ni3z59PA4ny1zzWsR87ISqmnKlWZadyuoOWUoVmVd1tyIVUWrRqDu0pcIgG3bKTQK2ppyDZyWSvApuTrcXate7rzdKr-XTlm5mC3luAPaVJzX9RdLXnrwau9C8Gj-AApyLFBuZCpQjgUmLmlkbg4MphBfFr0M2uKgsbMedZSds__QP4ZKeZY</recordid><startdate>20200801</startdate><enddate>20200801</enddate><creator>Vu, Huong T.L.</creator><creator>Richard, Frédéric J.P.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0001-5146-9894</orcidid></search><sort><creationdate>20200801</creationdate><title>Statistical tests of heterogeneity for anisotropic multifractional Brownian fields</title><author>Vu, Huong T.L. ; Richard, Frédéric J.P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c374t-564a885bc2ccdb07312e4b57573f4b61684ecd122e00e99daefa09713c0315a43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Anisotropic fractional Brownian field</topic><topic>Anisotropy</topic><topic>Applications</topic><topic>Engineering Sciences</topic><topic>Heterogeneity</topic><topic>Methodology</topic><topic>Multifractional Brownian field</topic><topic>Quadratic variations</topic><topic>Signal and Image processing</topic><topic>Statistical test</topic><topic>Statistics</topic><topic>Statistics Theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vu, Huong T.L.</creatorcontrib><creatorcontrib>Richard, Frédéric J.P.</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Stochastic processes and their applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vu, Huong T.L.</au><au>Richard, Frédéric J.P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Statistical tests of heterogeneity for anisotropic multifractional Brownian fields</atitle><jtitle>Stochastic processes and their applications</jtitle><date>2020-08-01</date><risdate>2020</risdate><volume>130</volume><issue>8</issue><spage>4667</spage><epage>4692</epage><pages>4667-4692</pages><issn>0304-4149</issn><eissn>1879-209X</eissn><abstract>In this paper, we deal with some anisotropic extensions of the multifractional Brownian fields that account for spatial phenomena whose properties of regularity and directionality may both vary in space. Our aim is to set statistical tests to decide whether an observed field of this kind is heterogeneous or not. The statistical methodology relies upon a field analysis by quadratic variations, which are averages of square field increments. Specific to our approach, these variations are computed locally in several directions. We establish an asymptotic result showing a linear Gaussian relationship between these variations and parameters related to regularity and directional properties of the model. Using this result, we then design a test procedure based on Fisher statistics of linear Gaussian models. Eventually we evaluate this procedure on simulated data.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.spa.2020.01.012</doi><tpages>26</tpages><orcidid>https://orcid.org/0000-0001-5146-9894</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0304-4149
ispartof Stochastic processes and their applications, 2020-08, Vol.130 (8), p.4667-4692
issn 0304-4149
1879-209X
language eng
recordid cdi_hal_primary_oai_HAL_hal_01863377v2
source Access via ScienceDirect (Elsevier); EZB-FREE-00999 freely available EZB journals
subjects Anisotropic fractional Brownian field
Anisotropy
Applications
Engineering Sciences
Heterogeneity
Methodology
Multifractional Brownian field
Quadratic variations
Signal and Image processing
Statistical test
Statistics
Statistics Theory
title Statistical tests of heterogeneity for anisotropic multifractional Brownian fields
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T04%3A07%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Statistical%20tests%20of%20heterogeneity%20for%20anisotropic%20multifractional%20Brownian%20fields&rft.jtitle=Stochastic%20processes%20and%20their%20applications&rft.au=Vu,%20Huong%20T.L.&rft.date=2020-08-01&rft.volume=130&rft.issue=8&rft.spage=4667&rft.epage=4692&rft.pages=4667-4692&rft.issn=0304-4149&rft.eissn=1879-209X&rft_id=info:doi/10.1016/j.spa.2020.01.012&rft_dat=%3Chal_cross%3Eoai_HAL_hal_01863377v2%3C/hal_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0304414918303430&rfr_iscdi=true