Planar and radial kinks in nonlinear Klein-Gordon models: Existence, stability, and dynamics
We consider effectively one-dimensional planar and radial kinks in two-dimensional nonlinear Klein-Gordon models and focus on the sine-Gordon model and the ϕ4 variants thereof. We adapt an adiabatic invariant formulation recently developed for nonlinear Schrödinger equations, and we study the transv...
Gespeichert in:
Veröffentlicht in: | Physical review. E 2018-11, Vol.98 (5), Article 052217 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 5 |
container_start_page | |
container_title | Physical review. E |
container_volume | 98 |
creator | Kevrekidis, P. G. Danaila, I. Caputo, J.-G. Carretero-González, R. |
description | We consider effectively one-dimensional planar and radial kinks in two-dimensional nonlinear Klein-Gordon models and focus on the sine-Gordon model and the ϕ4 variants thereof. We adapt an adiabatic invariant formulation recently developed for nonlinear Schrödinger equations, and we study the transverse stability of these kinks. This enables us to characterize one-dimensional planar kinks as solitonic filaments, whose stationary states and corresponding spectral stability can be characterized not only in the homogeneous case, but also in the presence of external potentials. Beyond that, the full nonlinear (transverse) dynamics of such filaments are described using the reduced, one-dimensional, adiabatic invariant formulation. For radial kinks, this approach confirms their azimuthal stability. It also predicts the possibility of creating stationary and stable ringlike kinks. In all cases, we corroborate the results of our methodology with full numerics on the original sine-Gordon and ϕ4 models. |
doi_str_mv | 10.1103/PhysRevE.98.052217 |
format | Article |
fullrecord | <record><control><sourceid>hal_cross</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01861866v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_HAL_hal_01861866v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c325t-6a9a49884940b100cdcb50cbcc7714e7bc3783a640be09412be07f16a058d3163</originalsourceid><addsrcrecordid>eNo9kFFLwzAUhYMoOOb-gE95FdZ506RJ69sYcxMHDtE3IdymGYvLUmnKsP_ezungwrncc-55-Ai5ZTBhDPj9etvFV3uYT4p8AlmaMnVBBqlQkABk_PK8i-yajGL8BAAmoVAsHZCPtceADcVQ0QYrh57uXNhF6gINdfAu2N599taFZFE3VR3ovq6sjw90_u1ia4OxYxpbLJ13bTf-Laq6gHtn4g252qCPdvSnQ_L-OH-bLZPVy-JpNl0lhqdZm0gsUBR5LgoBJQMwlSkzMKUxSjFhVWm4yjnK3rVQCJb2ojZMImR5xZnkQ3J36t2i11-N22PT6RqdXk5X-ngDlst-5IH12fSUNU0dY2M35wcG-ohT_-PURa5POPkPb65pOA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Planar and radial kinks in nonlinear Klein-Gordon models: Existence, stability, and dynamics</title><source>American Physical Society Journals</source><creator>Kevrekidis, P. G. ; Danaila, I. ; Caputo, J.-G. ; Carretero-González, R.</creator><creatorcontrib>Kevrekidis, P. G. ; Danaila, I. ; Caputo, J.-G. ; Carretero-González, R.</creatorcontrib><description>We consider effectively one-dimensional planar and radial kinks in two-dimensional nonlinear Klein-Gordon models and focus on the sine-Gordon model and the ϕ4 variants thereof. We adapt an adiabatic invariant formulation recently developed for nonlinear Schrödinger equations, and we study the transverse stability of these kinks. This enables us to characterize one-dimensional planar kinks as solitonic filaments, whose stationary states and corresponding spectral stability can be characterized not only in the homogeneous case, but also in the presence of external potentials. Beyond that, the full nonlinear (transverse) dynamics of such filaments are described using the reduced, one-dimensional, adiabatic invariant formulation. For radial kinks, this approach confirms their azimuthal stability. It also predicts the possibility of creating stationary and stable ringlike kinks. In all cases, we corroborate the results of our methodology with full numerics on the original sine-Gordon and ϕ4 models.</description><identifier>ISSN: 2470-0045</identifier><identifier>ISSN: 1539-3755</identifier><identifier>EISSN: 2470-0053</identifier><identifier>EISSN: 1550-2376</identifier><identifier>DOI: 10.1103/PhysRevE.98.052217</identifier><language>eng</language><publisher>American Physical Society</publisher><subject>Mathematical Physics ; Physics</subject><ispartof>Physical review. E, 2018-11, Vol.98 (5), Article 052217</ispartof><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c325t-6a9a49884940b100cdcb50cbcc7714e7bc3783a640be09412be07f16a058d3163</citedby><cites>FETCH-LOGICAL-c325t-6a9a49884940b100cdcb50cbcc7714e7bc3783a640be09412be07f16a058d3163</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,2876,2877,27924,27925</link.rule.ids><backlink>$$Uhttps://hal.science/hal-01861866$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Kevrekidis, P. G.</creatorcontrib><creatorcontrib>Danaila, I.</creatorcontrib><creatorcontrib>Caputo, J.-G.</creatorcontrib><creatorcontrib>Carretero-González, R.</creatorcontrib><title>Planar and radial kinks in nonlinear Klein-Gordon models: Existence, stability, and dynamics</title><title>Physical review. E</title><description>We consider effectively one-dimensional planar and radial kinks in two-dimensional nonlinear Klein-Gordon models and focus on the sine-Gordon model and the ϕ4 variants thereof. We adapt an adiabatic invariant formulation recently developed for nonlinear Schrödinger equations, and we study the transverse stability of these kinks. This enables us to characterize one-dimensional planar kinks as solitonic filaments, whose stationary states and corresponding spectral stability can be characterized not only in the homogeneous case, but also in the presence of external potentials. Beyond that, the full nonlinear (transverse) dynamics of such filaments are described using the reduced, one-dimensional, adiabatic invariant formulation. For radial kinks, this approach confirms their azimuthal stability. It also predicts the possibility of creating stationary and stable ringlike kinks. In all cases, we corroborate the results of our methodology with full numerics on the original sine-Gordon and ϕ4 models.</description><subject>Mathematical Physics</subject><subject>Physics</subject><issn>2470-0045</issn><issn>1539-3755</issn><issn>2470-0053</issn><issn>1550-2376</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNo9kFFLwzAUhYMoOOb-gE95FdZ506RJ69sYcxMHDtE3IdymGYvLUmnKsP_ezungwrncc-55-Ai5ZTBhDPj9etvFV3uYT4p8AlmaMnVBBqlQkABk_PK8i-yajGL8BAAmoVAsHZCPtceADcVQ0QYrh57uXNhF6gINdfAu2N599taFZFE3VR3ovq6sjw90_u1ia4OxYxpbLJ13bTf-Laq6gHtn4g252qCPdvSnQ_L-OH-bLZPVy-JpNl0lhqdZm0gsUBR5LgoBJQMwlSkzMKUxSjFhVWm4yjnK3rVQCJb2ojZMImR5xZnkQ3J36t2i11-N22PT6RqdXk5X-ngDlst-5IH12fSUNU0dY2M35wcG-ohT_-PURa5POPkPb65pOA</recordid><startdate>20181119</startdate><enddate>20181119</enddate><creator>Kevrekidis, P. G.</creator><creator>Danaila, I.</creator><creator>Caputo, J.-G.</creator><creator>Carretero-González, R.</creator><general>American Physical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope></search><sort><creationdate>20181119</creationdate><title>Planar and radial kinks in nonlinear Klein-Gordon models: Existence, stability, and dynamics</title><author>Kevrekidis, P. G. ; Danaila, I. ; Caputo, J.-G. ; Carretero-González, R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c325t-6a9a49884940b100cdcb50cbcc7714e7bc3783a640be09412be07f16a058d3163</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Mathematical Physics</topic><topic>Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kevrekidis, P. G.</creatorcontrib><creatorcontrib>Danaila, I.</creatorcontrib><creatorcontrib>Caputo, J.-G.</creatorcontrib><creatorcontrib>Carretero-González, R.</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Physical review. E</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kevrekidis, P. G.</au><au>Danaila, I.</au><au>Caputo, J.-G.</au><au>Carretero-González, R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Planar and radial kinks in nonlinear Klein-Gordon models: Existence, stability, and dynamics</atitle><jtitle>Physical review. E</jtitle><date>2018-11-19</date><risdate>2018</risdate><volume>98</volume><issue>5</issue><artnum>052217</artnum><issn>2470-0045</issn><issn>1539-3755</issn><eissn>2470-0053</eissn><eissn>1550-2376</eissn><abstract>We consider effectively one-dimensional planar and radial kinks in two-dimensional nonlinear Klein-Gordon models and focus on the sine-Gordon model and the ϕ4 variants thereof. We adapt an adiabatic invariant formulation recently developed for nonlinear Schrödinger equations, and we study the transverse stability of these kinks. This enables us to characterize one-dimensional planar kinks as solitonic filaments, whose stationary states and corresponding spectral stability can be characterized not only in the homogeneous case, but also in the presence of external potentials. Beyond that, the full nonlinear (transverse) dynamics of such filaments are described using the reduced, one-dimensional, adiabatic invariant formulation. For radial kinks, this approach confirms their azimuthal stability. It also predicts the possibility of creating stationary and stable ringlike kinks. In all cases, we corroborate the results of our methodology with full numerics on the original sine-Gordon and ϕ4 models.</abstract><pub>American Physical Society</pub><doi>10.1103/PhysRevE.98.052217</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2470-0045 |
ispartof | Physical review. E, 2018-11, Vol.98 (5), Article 052217 |
issn | 2470-0045 1539-3755 2470-0053 1550-2376 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_01861866v1 |
source | American Physical Society Journals |
subjects | Mathematical Physics Physics |
title | Planar and radial kinks in nonlinear Klein-Gordon models: Existence, stability, and dynamics |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T11%3A26%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Planar%20and%20radial%20kinks%20in%20nonlinear%20Klein-Gordon%20models:%20Existence,%20stability,%20and%20dynamics&rft.jtitle=Physical%20review.%20E&rft.au=Kevrekidis,%20P.%20G.&rft.date=2018-11-19&rft.volume=98&rft.issue=5&rft.artnum=052217&rft.issn=2470-0045&rft.eissn=2470-0053&rft_id=info:doi/10.1103/PhysRevE.98.052217&rft_dat=%3Chal_cross%3Eoai_HAL_hal_01861866v1%3C/hal_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |