Planar and radial kinks in nonlinear Klein-Gordon models: Existence, stability, and dynamics

We consider effectively one-dimensional planar and radial kinks in two-dimensional nonlinear Klein-Gordon models and focus on the sine-Gordon model and the ϕ4 variants thereof. We adapt an adiabatic invariant formulation recently developed for nonlinear Schrödinger equations, and we study the transv...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. E 2018-11, Vol.98 (5), Article 052217
Hauptverfasser: Kevrekidis, P. G., Danaila, I., Caputo, J.-G., Carretero-González, R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 5
container_start_page
container_title Physical review. E
container_volume 98
creator Kevrekidis, P. G.
Danaila, I.
Caputo, J.-G.
Carretero-González, R.
description We consider effectively one-dimensional planar and radial kinks in two-dimensional nonlinear Klein-Gordon models and focus on the sine-Gordon model and the ϕ4 variants thereof. We adapt an adiabatic invariant formulation recently developed for nonlinear Schrödinger equations, and we study the transverse stability of these kinks. This enables us to characterize one-dimensional planar kinks as solitonic filaments, whose stationary states and corresponding spectral stability can be characterized not only in the homogeneous case, but also in the presence of external potentials. Beyond that, the full nonlinear (transverse) dynamics of such filaments are described using the reduced, one-dimensional, adiabatic invariant formulation. For radial kinks, this approach confirms their azimuthal stability. It also predicts the possibility of creating stationary and stable ringlike kinks. In all cases, we corroborate the results of our methodology with full numerics on the original sine-Gordon and ϕ4 models.
doi_str_mv 10.1103/PhysRevE.98.052217
format Article
fullrecord <record><control><sourceid>hal_cross</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01861866v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_HAL_hal_01861866v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c325t-6a9a49884940b100cdcb50cbcc7714e7bc3783a640be09412be07f16a058d3163</originalsourceid><addsrcrecordid>eNo9kFFLwzAUhYMoOOb-gE95FdZ506RJ69sYcxMHDtE3IdymGYvLUmnKsP_ezungwrncc-55-Ai5ZTBhDPj9etvFV3uYT4p8AlmaMnVBBqlQkABk_PK8i-yajGL8BAAmoVAsHZCPtceADcVQ0QYrh57uXNhF6gINdfAu2N599taFZFE3VR3ovq6sjw90_u1ia4OxYxpbLJ13bTf-Laq6gHtn4g252qCPdvSnQ_L-OH-bLZPVy-JpNl0lhqdZm0gsUBR5LgoBJQMwlSkzMKUxSjFhVWm4yjnK3rVQCJb2ojZMImR5xZnkQ3J36t2i11-N22PT6RqdXk5X-ngDlst-5IH12fSUNU0dY2M35wcG-ohT_-PURa5POPkPb65pOA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Planar and radial kinks in nonlinear Klein-Gordon models: Existence, stability, and dynamics</title><source>American Physical Society Journals</source><creator>Kevrekidis, P. G. ; Danaila, I. ; Caputo, J.-G. ; Carretero-González, R.</creator><creatorcontrib>Kevrekidis, P. G. ; Danaila, I. ; Caputo, J.-G. ; Carretero-González, R.</creatorcontrib><description>We consider effectively one-dimensional planar and radial kinks in two-dimensional nonlinear Klein-Gordon models and focus on the sine-Gordon model and the ϕ4 variants thereof. We adapt an adiabatic invariant formulation recently developed for nonlinear Schrödinger equations, and we study the transverse stability of these kinks. This enables us to characterize one-dimensional planar kinks as solitonic filaments, whose stationary states and corresponding spectral stability can be characterized not only in the homogeneous case, but also in the presence of external potentials. Beyond that, the full nonlinear (transverse) dynamics of such filaments are described using the reduced, one-dimensional, adiabatic invariant formulation. For radial kinks, this approach confirms their azimuthal stability. It also predicts the possibility of creating stationary and stable ringlike kinks. In all cases, we corroborate the results of our methodology with full numerics on the original sine-Gordon and ϕ4 models.</description><identifier>ISSN: 2470-0045</identifier><identifier>ISSN: 1539-3755</identifier><identifier>EISSN: 2470-0053</identifier><identifier>EISSN: 1550-2376</identifier><identifier>DOI: 10.1103/PhysRevE.98.052217</identifier><language>eng</language><publisher>American Physical Society</publisher><subject>Mathematical Physics ; Physics</subject><ispartof>Physical review. E, 2018-11, Vol.98 (5), Article 052217</ispartof><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c325t-6a9a49884940b100cdcb50cbcc7714e7bc3783a640be09412be07f16a058d3163</citedby><cites>FETCH-LOGICAL-c325t-6a9a49884940b100cdcb50cbcc7714e7bc3783a640be09412be07f16a058d3163</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,2876,2877,27924,27925</link.rule.ids><backlink>$$Uhttps://hal.science/hal-01861866$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Kevrekidis, P. G.</creatorcontrib><creatorcontrib>Danaila, I.</creatorcontrib><creatorcontrib>Caputo, J.-G.</creatorcontrib><creatorcontrib>Carretero-González, R.</creatorcontrib><title>Planar and radial kinks in nonlinear Klein-Gordon models: Existence, stability, and dynamics</title><title>Physical review. E</title><description>We consider effectively one-dimensional planar and radial kinks in two-dimensional nonlinear Klein-Gordon models and focus on the sine-Gordon model and the ϕ4 variants thereof. We adapt an adiabatic invariant formulation recently developed for nonlinear Schrödinger equations, and we study the transverse stability of these kinks. This enables us to characterize one-dimensional planar kinks as solitonic filaments, whose stationary states and corresponding spectral stability can be characterized not only in the homogeneous case, but also in the presence of external potentials. Beyond that, the full nonlinear (transverse) dynamics of such filaments are described using the reduced, one-dimensional, adiabatic invariant formulation. For radial kinks, this approach confirms their azimuthal stability. It also predicts the possibility of creating stationary and stable ringlike kinks. In all cases, we corroborate the results of our methodology with full numerics on the original sine-Gordon and ϕ4 models.</description><subject>Mathematical Physics</subject><subject>Physics</subject><issn>2470-0045</issn><issn>1539-3755</issn><issn>2470-0053</issn><issn>1550-2376</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNo9kFFLwzAUhYMoOOb-gE95FdZ506RJ69sYcxMHDtE3IdymGYvLUmnKsP_ezungwrncc-55-Ai5ZTBhDPj9etvFV3uYT4p8AlmaMnVBBqlQkABk_PK8i-yajGL8BAAmoVAsHZCPtceADcVQ0QYrh57uXNhF6gINdfAu2N599taFZFE3VR3ovq6sjw90_u1ia4OxYxpbLJ13bTf-Laq6gHtn4g252qCPdvSnQ_L-OH-bLZPVy-JpNl0lhqdZm0gsUBR5LgoBJQMwlSkzMKUxSjFhVWm4yjnK3rVQCJb2ojZMImR5xZnkQ3J36t2i11-N22PT6RqdXk5X-ngDlst-5IH12fSUNU0dY2M35wcG-ohT_-PURa5POPkPb65pOA</recordid><startdate>20181119</startdate><enddate>20181119</enddate><creator>Kevrekidis, P. G.</creator><creator>Danaila, I.</creator><creator>Caputo, J.-G.</creator><creator>Carretero-González, R.</creator><general>American Physical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope></search><sort><creationdate>20181119</creationdate><title>Planar and radial kinks in nonlinear Klein-Gordon models: Existence, stability, and dynamics</title><author>Kevrekidis, P. G. ; Danaila, I. ; Caputo, J.-G. ; Carretero-González, R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c325t-6a9a49884940b100cdcb50cbcc7714e7bc3783a640be09412be07f16a058d3163</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Mathematical Physics</topic><topic>Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kevrekidis, P. G.</creatorcontrib><creatorcontrib>Danaila, I.</creatorcontrib><creatorcontrib>Caputo, J.-G.</creatorcontrib><creatorcontrib>Carretero-González, R.</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Physical review. E</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kevrekidis, P. G.</au><au>Danaila, I.</au><au>Caputo, J.-G.</au><au>Carretero-González, R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Planar and radial kinks in nonlinear Klein-Gordon models: Existence, stability, and dynamics</atitle><jtitle>Physical review. E</jtitle><date>2018-11-19</date><risdate>2018</risdate><volume>98</volume><issue>5</issue><artnum>052217</artnum><issn>2470-0045</issn><issn>1539-3755</issn><eissn>2470-0053</eissn><eissn>1550-2376</eissn><abstract>We consider effectively one-dimensional planar and radial kinks in two-dimensional nonlinear Klein-Gordon models and focus on the sine-Gordon model and the ϕ4 variants thereof. We adapt an adiabatic invariant formulation recently developed for nonlinear Schrödinger equations, and we study the transverse stability of these kinks. This enables us to characterize one-dimensional planar kinks as solitonic filaments, whose stationary states and corresponding spectral stability can be characterized not only in the homogeneous case, but also in the presence of external potentials. Beyond that, the full nonlinear (transverse) dynamics of such filaments are described using the reduced, one-dimensional, adiabatic invariant formulation. For radial kinks, this approach confirms their azimuthal stability. It also predicts the possibility of creating stationary and stable ringlike kinks. In all cases, we corroborate the results of our methodology with full numerics on the original sine-Gordon and ϕ4 models.</abstract><pub>American Physical Society</pub><doi>10.1103/PhysRevE.98.052217</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2470-0045
ispartof Physical review. E, 2018-11, Vol.98 (5), Article 052217
issn 2470-0045
1539-3755
2470-0053
1550-2376
language eng
recordid cdi_hal_primary_oai_HAL_hal_01861866v1
source American Physical Society Journals
subjects Mathematical Physics
Physics
title Planar and radial kinks in nonlinear Klein-Gordon models: Existence, stability, and dynamics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T11%3A26%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Planar%20and%20radial%20kinks%20in%20nonlinear%20Klein-Gordon%20models:%20Existence,%20stability,%20and%20dynamics&rft.jtitle=Physical%20review.%20E&rft.au=Kevrekidis,%20P.%20G.&rft.date=2018-11-19&rft.volume=98&rft.issue=5&rft.artnum=052217&rft.issn=2470-0045&rft.eissn=2470-0053&rft_id=info:doi/10.1103/PhysRevE.98.052217&rft_dat=%3Chal_cross%3Eoai_HAL_hal_01861866v1%3C/hal_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true