Designing cooperatively folded abiotic uni- and multimolecular helix bundles

Abiotic foldamers, that is foldamers that have backbones chemically remote from peptidic and nucleotidic skeletons, may give access to shapes and functions different to those of peptides and nucleotides. However, design methodologies towards abiotic tertiary and quaternary structures are yet to be d...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature chemistry 2018-01, Vol.10 (1), p.51-57
Hauptverfasser: De, Soumen, Chi, Bo, Granier, Thierry, Qi, Ting, Maurizot, Victor, Huc, Ivan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 57
container_issue 1
container_start_page 51
container_title Nature chemistry
container_volume 10
creator De, Soumen
Chi, Bo
Granier, Thierry
Qi, Ting
Maurizot, Victor
Huc, Ivan
description Abiotic foldamers, that is foldamers that have backbones chemically remote from peptidic and nucleotidic skeletons, may give access to shapes and functions different to those of peptides and nucleotides. However, design methodologies towards abiotic tertiary and quaternary structures are yet to be developed. Here we report rationally designed interactional patterns to guide the folding and assembly of abiotic helix bundles. Computational design facilitated the introduction of hydrogen-bonding functionalities at defined locations on the aromatic amide backbones that promote cooperative folding into helix–turn–helix motifs in organic solvents. The hydrogen-bond-directed aggregation of helices not linked by a turn unit produced several thermodynamically and kinetically stable homochiral dimeric and trimeric bundles with structures that are distinct from the designed helix–turn–helix. Relative helix orientation within the bundles may be changed from parallel to tilted on subtle solvent variations. Altogether, these results prefigure the richness and uniqueness of abiotic tertiary structure behaviour. Rationally designed arrays of hydrogen bonds between aromatic oligoamide segments have now been shown to generate abiotic helix-turn-helix and unexpected dimeric and trimeric helix bundle motifs. These structures show kinetic and thermodynamic stability, and cooperative folding in nonpolar solvents.
doi_str_mv 10.1038/nchem.2854
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01848987v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1978718576</sourcerecordid><originalsourceid>FETCH-LOGICAL-c315t-504297e81709e90d3b9dc9b9a07bbc2130410f7a13be87c5fc296ac6e6e88e9c3</originalsourceid><addsrcrecordid>eNpl0U9v2yAYBnA0tVrTbJd9gMpSL2srd2CMgWPV_1KkXrYzwvh1QoUhBTtqvv2cuoum9gSCnx5e9CD0g-BLgqn45c0KustCsPILmhHOWF7SUh7s9xQfoeOUnjGuGCXVV3RUyIJVDIsZWtxAsktv_TIzIawh6t5uwG2zNrgGmkzXNvTWZIO3eaZ9k3WD620XHJjB6ZitwNnXrB584yB9Q4etdgm-v69z9Ofu9vf1Q754un-8vlrkhhLW5wyXheQgCMcSJG5oLRsja6kxr2tTEIpLgluuCa1BcMNaU8hKmwoqEAKkoXN0NuWutFPraDsdtypoqx6uFmp3hokohRR8Q0b7c7LrGF4GSL3qbDLgnPYQhqSI5IITwXg10tMP9DkM0Y8_mRSXhNJRnU_KxJBShHY_AcFq14d660Pt-hjxyXvkUHfQ7Om_AkZwMYE0XvklxP_e_Bz3FwEzlAo</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1978779133</pqid></control><display><type>article</type><title>Designing cooperatively folded abiotic uni- and multimolecular helix bundles</title><source>Springer Nature - Complete Springer Journals</source><source>Nature</source><creator>De, Soumen ; Chi, Bo ; Granier, Thierry ; Qi, Ting ; Maurizot, Victor ; Huc, Ivan</creator><creatorcontrib>De, Soumen ; Chi, Bo ; Granier, Thierry ; Qi, Ting ; Maurizot, Victor ; Huc, Ivan</creatorcontrib><description>Abiotic foldamers, that is foldamers that have backbones chemically remote from peptidic and nucleotidic skeletons, may give access to shapes and functions different to those of peptides and nucleotides. However, design methodologies towards abiotic tertiary and quaternary structures are yet to be developed. Here we report rationally designed interactional patterns to guide the folding and assembly of abiotic helix bundles. Computational design facilitated the introduction of hydrogen-bonding functionalities at defined locations on the aromatic amide backbones that promote cooperative folding into helix–turn–helix motifs in organic solvents. The hydrogen-bond-directed aggregation of helices not linked by a turn unit produced several thermodynamically and kinetically stable homochiral dimeric and trimeric bundles with structures that are distinct from the designed helix–turn–helix. Relative helix orientation within the bundles may be changed from parallel to tilted on subtle solvent variations. Altogether, these results prefigure the richness and uniqueness of abiotic tertiary structure behaviour. Rationally designed arrays of hydrogen bonds between aromatic oligoamide segments have now been shown to generate abiotic helix-turn-helix and unexpected dimeric and trimeric helix bundle motifs. These structures show kinetic and thermodynamic stability, and cooperative folding in nonpolar solvents.</description><identifier>ISSN: 1755-4330</identifier><identifier>EISSN: 1755-4349</identifier><identifier>DOI: 10.1038/nchem.2854</identifier><identifier>PMID: 29256508</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/638/45/470 ; 639/638/541/966 ; Analytical Chemistry ; Biochemistry ; Bundles ; Bundling ; Chemical bonds ; Chemical Sciences ; Chemistry ; Chemistry/Food Science ; Computer applications ; Design ; Folding ; Helices ; Hydrogen bonding ; Inorganic Chemistry ; Nucleotides ; Organic Chemistry ; Organic solvents ; Peptides ; Physical Chemistry ; Protein structure ; Solvents ; Tertiary structure ; Uniqueness</subject><ispartof>Nature chemistry, 2018-01, Vol.10 (1), p.51-57</ispartof><rights>Springer Nature Limited 2017</rights><rights>Copyright Nature Publishing Group Jan 2018</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c315t-504297e81709e90d3b9dc9b9a07bbc2130410f7a13be87c5fc296ac6e6e88e9c3</citedby><cites>FETCH-LOGICAL-c315t-504297e81709e90d3b9dc9b9a07bbc2130410f7a13be87c5fc296ac6e6e88e9c3</cites><orcidid>0000-0003-4674-9183 ; 0000-0001-6104-796X ; 0000-0001-7036-9696 ; 0000-0003-1347-2608 ; 0000-0002-7900-7285 ; 0000-0002-4101-1860</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/nchem.2854$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/nchem.2854$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27903,27904,41467,42536,51297</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29256508$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-01848987$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>De, Soumen</creatorcontrib><creatorcontrib>Chi, Bo</creatorcontrib><creatorcontrib>Granier, Thierry</creatorcontrib><creatorcontrib>Qi, Ting</creatorcontrib><creatorcontrib>Maurizot, Victor</creatorcontrib><creatorcontrib>Huc, Ivan</creatorcontrib><title>Designing cooperatively folded abiotic uni- and multimolecular helix bundles</title><title>Nature chemistry</title><addtitle>Nature Chem</addtitle><addtitle>Nat Chem</addtitle><description>Abiotic foldamers, that is foldamers that have backbones chemically remote from peptidic and nucleotidic skeletons, may give access to shapes and functions different to those of peptides and nucleotides. However, design methodologies towards abiotic tertiary and quaternary structures are yet to be developed. Here we report rationally designed interactional patterns to guide the folding and assembly of abiotic helix bundles. Computational design facilitated the introduction of hydrogen-bonding functionalities at defined locations on the aromatic amide backbones that promote cooperative folding into helix–turn–helix motifs in organic solvents. The hydrogen-bond-directed aggregation of helices not linked by a turn unit produced several thermodynamically and kinetically stable homochiral dimeric and trimeric bundles with structures that are distinct from the designed helix–turn–helix. Relative helix orientation within the bundles may be changed from parallel to tilted on subtle solvent variations. Altogether, these results prefigure the richness and uniqueness of abiotic tertiary structure behaviour. Rationally designed arrays of hydrogen bonds between aromatic oligoamide segments have now been shown to generate abiotic helix-turn-helix and unexpected dimeric and trimeric helix bundle motifs. These structures show kinetic and thermodynamic stability, and cooperative folding in nonpolar solvents.</description><subject>639/638/45/470</subject><subject>639/638/541/966</subject><subject>Analytical Chemistry</subject><subject>Biochemistry</subject><subject>Bundles</subject><subject>Bundling</subject><subject>Chemical bonds</subject><subject>Chemical Sciences</subject><subject>Chemistry</subject><subject>Chemistry/Food Science</subject><subject>Computer applications</subject><subject>Design</subject><subject>Folding</subject><subject>Helices</subject><subject>Hydrogen bonding</subject><subject>Inorganic Chemistry</subject><subject>Nucleotides</subject><subject>Organic Chemistry</subject><subject>Organic solvents</subject><subject>Peptides</subject><subject>Physical Chemistry</subject><subject>Protein structure</subject><subject>Solvents</subject><subject>Tertiary structure</subject><subject>Uniqueness</subject><issn>1755-4330</issn><issn>1755-4349</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNpl0U9v2yAYBnA0tVrTbJd9gMpSL2srd2CMgWPV_1KkXrYzwvh1QoUhBTtqvv2cuoum9gSCnx5e9CD0g-BLgqn45c0KustCsPILmhHOWF7SUh7s9xQfoeOUnjGuGCXVV3RUyIJVDIsZWtxAsktv_TIzIawh6t5uwG2zNrgGmkzXNvTWZIO3eaZ9k3WD620XHJjB6ZitwNnXrB584yB9Q4etdgm-v69z9Ofu9vf1Q754un-8vlrkhhLW5wyXheQgCMcSJG5oLRsja6kxr2tTEIpLgluuCa1BcMNaU8hKmwoqEAKkoXN0NuWutFPraDsdtypoqx6uFmp3hokohRR8Q0b7c7LrGF4GSL3qbDLgnPYQhqSI5IITwXg10tMP9DkM0Y8_mRSXhNJRnU_KxJBShHY_AcFq14d660Pt-hjxyXvkUHfQ7Om_AkZwMYE0XvklxP_e_Bz3FwEzlAo</recordid><startdate>20180101</startdate><enddate>20180101</enddate><creator>De, Soumen</creator><creator>Chi, Bo</creator><creator>Granier, Thierry</creator><creator>Qi, Ting</creator><creator>Maurizot, Victor</creator><creator>Huc, Ivan</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QR</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0003-4674-9183</orcidid><orcidid>https://orcid.org/0000-0001-6104-796X</orcidid><orcidid>https://orcid.org/0000-0001-7036-9696</orcidid><orcidid>https://orcid.org/0000-0003-1347-2608</orcidid><orcidid>https://orcid.org/0000-0002-7900-7285</orcidid><orcidid>https://orcid.org/0000-0002-4101-1860</orcidid></search><sort><creationdate>20180101</creationdate><title>Designing cooperatively folded abiotic uni- and multimolecular helix bundles</title><author>De, Soumen ; Chi, Bo ; Granier, Thierry ; Qi, Ting ; Maurizot, Victor ; Huc, Ivan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c315t-504297e81709e90d3b9dc9b9a07bbc2130410f7a13be87c5fc296ac6e6e88e9c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>639/638/45/470</topic><topic>639/638/541/966</topic><topic>Analytical Chemistry</topic><topic>Biochemistry</topic><topic>Bundles</topic><topic>Bundling</topic><topic>Chemical bonds</topic><topic>Chemical Sciences</topic><topic>Chemistry</topic><topic>Chemistry/Food Science</topic><topic>Computer applications</topic><topic>Design</topic><topic>Folding</topic><topic>Helices</topic><topic>Hydrogen bonding</topic><topic>Inorganic Chemistry</topic><topic>Nucleotides</topic><topic>Organic Chemistry</topic><topic>Organic solvents</topic><topic>Peptides</topic><topic>Physical Chemistry</topic><topic>Protein structure</topic><topic>Solvents</topic><topic>Tertiary structure</topic><topic>Uniqueness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>De, Soumen</creatorcontrib><creatorcontrib>Chi, Bo</creatorcontrib><creatorcontrib>Granier, Thierry</creatorcontrib><creatorcontrib>Qi, Ting</creatorcontrib><creatorcontrib>Maurizot, Victor</creatorcontrib><creatorcontrib>Huc, Ivan</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Chemoreception Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials science collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Nature chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>De, Soumen</au><au>Chi, Bo</au><au>Granier, Thierry</au><au>Qi, Ting</au><au>Maurizot, Victor</au><au>Huc, Ivan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Designing cooperatively folded abiotic uni- and multimolecular helix bundles</atitle><jtitle>Nature chemistry</jtitle><stitle>Nature Chem</stitle><addtitle>Nat Chem</addtitle><date>2018-01-01</date><risdate>2018</risdate><volume>10</volume><issue>1</issue><spage>51</spage><epage>57</epage><pages>51-57</pages><issn>1755-4330</issn><eissn>1755-4349</eissn><abstract>Abiotic foldamers, that is foldamers that have backbones chemically remote from peptidic and nucleotidic skeletons, may give access to shapes and functions different to those of peptides and nucleotides. However, design methodologies towards abiotic tertiary and quaternary structures are yet to be developed. Here we report rationally designed interactional patterns to guide the folding and assembly of abiotic helix bundles. Computational design facilitated the introduction of hydrogen-bonding functionalities at defined locations on the aromatic amide backbones that promote cooperative folding into helix–turn–helix motifs in organic solvents. The hydrogen-bond-directed aggregation of helices not linked by a turn unit produced several thermodynamically and kinetically stable homochiral dimeric and trimeric bundles with structures that are distinct from the designed helix–turn–helix. Relative helix orientation within the bundles may be changed from parallel to tilted on subtle solvent variations. Altogether, these results prefigure the richness and uniqueness of abiotic tertiary structure behaviour. Rationally designed arrays of hydrogen bonds between aromatic oligoamide segments have now been shown to generate abiotic helix-turn-helix and unexpected dimeric and trimeric helix bundle motifs. These structures show kinetic and thermodynamic stability, and cooperative folding in nonpolar solvents.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>29256508</pmid><doi>10.1038/nchem.2854</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0003-4674-9183</orcidid><orcidid>https://orcid.org/0000-0001-6104-796X</orcidid><orcidid>https://orcid.org/0000-0001-7036-9696</orcidid><orcidid>https://orcid.org/0000-0003-1347-2608</orcidid><orcidid>https://orcid.org/0000-0002-7900-7285</orcidid><orcidid>https://orcid.org/0000-0002-4101-1860</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1755-4330
ispartof Nature chemistry, 2018-01, Vol.10 (1), p.51-57
issn 1755-4330
1755-4349
language eng
recordid cdi_hal_primary_oai_HAL_hal_01848987v1
source Springer Nature - Complete Springer Journals; Nature
subjects 639/638/45/470
639/638/541/966
Analytical Chemistry
Biochemistry
Bundles
Bundling
Chemical bonds
Chemical Sciences
Chemistry
Chemistry/Food Science
Computer applications
Design
Folding
Helices
Hydrogen bonding
Inorganic Chemistry
Nucleotides
Organic Chemistry
Organic solvents
Peptides
Physical Chemistry
Protein structure
Solvents
Tertiary structure
Uniqueness
title Designing cooperatively folded abiotic uni- and multimolecular helix bundles
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T21%3A28%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Designing%20cooperatively%20folded%20abiotic%20uni-%20and%20multimolecular%20helix%20bundles&rft.jtitle=Nature%20chemistry&rft.au=De,%20Soumen&rft.date=2018-01-01&rft.volume=10&rft.issue=1&rft.spage=51&rft.epage=57&rft.pages=51-57&rft.issn=1755-4330&rft.eissn=1755-4349&rft_id=info:doi/10.1038/nchem.2854&rft_dat=%3Cproquest_hal_p%3E1978718576%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1978779133&rft_id=info:pmid/29256508&rfr_iscdi=true