Designing cooperatively folded abiotic uni- and multimolecular helix bundles
Abiotic foldamers, that is foldamers that have backbones chemically remote from peptidic and nucleotidic skeletons, may give access to shapes and functions different to those of peptides and nucleotides. However, design methodologies towards abiotic tertiary and quaternary structures are yet to be d...
Gespeichert in:
Veröffentlicht in: | Nature chemistry 2018-01, Vol.10 (1), p.51-57 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 57 |
---|---|
container_issue | 1 |
container_start_page | 51 |
container_title | Nature chemistry |
container_volume | 10 |
creator | De, Soumen Chi, Bo Granier, Thierry Qi, Ting Maurizot, Victor Huc, Ivan |
description | Abiotic foldamers, that is foldamers that have backbones chemically remote from peptidic and nucleotidic skeletons, may give access to shapes and functions different to those of peptides and nucleotides. However, design methodologies towards abiotic tertiary and quaternary structures are yet to be developed. Here we report rationally designed interactional patterns to guide the folding and assembly of abiotic helix bundles. Computational design facilitated the introduction of hydrogen-bonding functionalities at defined locations on the aromatic amide backbones that promote cooperative folding into helix–turn–helix motifs in organic solvents. The hydrogen-bond-directed aggregation of helices not linked by a turn unit produced several thermodynamically and kinetically stable homochiral dimeric and trimeric bundles with structures that are distinct from the designed helix–turn–helix. Relative helix orientation within the bundles may be changed from parallel to tilted on subtle solvent variations. Altogether, these results prefigure the richness and uniqueness of abiotic tertiary structure behaviour.
Rationally designed arrays of hydrogen bonds between aromatic oligoamide segments have now been shown to generate abiotic helix-turn-helix and unexpected dimeric and trimeric helix bundle motifs. These structures show kinetic and thermodynamic stability, and cooperative folding in nonpolar solvents. |
doi_str_mv | 10.1038/nchem.2854 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01848987v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1978718576</sourcerecordid><originalsourceid>FETCH-LOGICAL-c315t-504297e81709e90d3b9dc9b9a07bbc2130410f7a13be87c5fc296ac6e6e88e9c3</originalsourceid><addsrcrecordid>eNpl0U9v2yAYBnA0tVrTbJd9gMpSL2srd2CMgWPV_1KkXrYzwvh1QoUhBTtqvv2cuoum9gSCnx5e9CD0g-BLgqn45c0KustCsPILmhHOWF7SUh7s9xQfoeOUnjGuGCXVV3RUyIJVDIsZWtxAsktv_TIzIawh6t5uwG2zNrgGmkzXNvTWZIO3eaZ9k3WD620XHJjB6ZitwNnXrB584yB9Q4etdgm-v69z9Ofu9vf1Q754un-8vlrkhhLW5wyXheQgCMcSJG5oLRsja6kxr2tTEIpLgluuCa1BcMNaU8hKmwoqEAKkoXN0NuWutFPraDsdtypoqx6uFmp3hokohRR8Q0b7c7LrGF4GSL3qbDLgnPYQhqSI5IITwXg10tMP9DkM0Y8_mRSXhNJRnU_KxJBShHY_AcFq14d660Pt-hjxyXvkUHfQ7Om_AkZwMYE0XvklxP_e_Bz3FwEzlAo</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1978779133</pqid></control><display><type>article</type><title>Designing cooperatively folded abiotic uni- and multimolecular helix bundles</title><source>Springer Nature - Complete Springer Journals</source><source>Nature</source><creator>De, Soumen ; Chi, Bo ; Granier, Thierry ; Qi, Ting ; Maurizot, Victor ; Huc, Ivan</creator><creatorcontrib>De, Soumen ; Chi, Bo ; Granier, Thierry ; Qi, Ting ; Maurizot, Victor ; Huc, Ivan</creatorcontrib><description>Abiotic foldamers, that is foldamers that have backbones chemically remote from peptidic and nucleotidic skeletons, may give access to shapes and functions different to those of peptides and nucleotides. However, design methodologies towards abiotic tertiary and quaternary structures are yet to be developed. Here we report rationally designed interactional patterns to guide the folding and assembly of abiotic helix bundles. Computational design facilitated the introduction of hydrogen-bonding functionalities at defined locations on the aromatic amide backbones that promote cooperative folding into helix–turn–helix motifs in organic solvents. The hydrogen-bond-directed aggregation of helices not linked by a turn unit produced several thermodynamically and kinetically stable homochiral dimeric and trimeric bundles with structures that are distinct from the designed helix–turn–helix. Relative helix orientation within the bundles may be changed from parallel to tilted on subtle solvent variations. Altogether, these results prefigure the richness and uniqueness of abiotic tertiary structure behaviour.
Rationally designed arrays of hydrogen bonds between aromatic oligoamide segments have now been shown to generate abiotic helix-turn-helix and unexpected dimeric and trimeric helix bundle motifs. These structures show kinetic and thermodynamic stability, and cooperative folding in nonpolar solvents.</description><identifier>ISSN: 1755-4330</identifier><identifier>EISSN: 1755-4349</identifier><identifier>DOI: 10.1038/nchem.2854</identifier><identifier>PMID: 29256508</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/638/45/470 ; 639/638/541/966 ; Analytical Chemistry ; Biochemistry ; Bundles ; Bundling ; Chemical bonds ; Chemical Sciences ; Chemistry ; Chemistry/Food Science ; Computer applications ; Design ; Folding ; Helices ; Hydrogen bonding ; Inorganic Chemistry ; Nucleotides ; Organic Chemistry ; Organic solvents ; Peptides ; Physical Chemistry ; Protein structure ; Solvents ; Tertiary structure ; Uniqueness</subject><ispartof>Nature chemistry, 2018-01, Vol.10 (1), p.51-57</ispartof><rights>Springer Nature Limited 2017</rights><rights>Copyright Nature Publishing Group Jan 2018</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c315t-504297e81709e90d3b9dc9b9a07bbc2130410f7a13be87c5fc296ac6e6e88e9c3</citedby><cites>FETCH-LOGICAL-c315t-504297e81709e90d3b9dc9b9a07bbc2130410f7a13be87c5fc296ac6e6e88e9c3</cites><orcidid>0000-0003-4674-9183 ; 0000-0001-6104-796X ; 0000-0001-7036-9696 ; 0000-0003-1347-2608 ; 0000-0002-7900-7285 ; 0000-0002-4101-1860</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/nchem.2854$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/nchem.2854$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27903,27904,41467,42536,51297</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29256508$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-01848987$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>De, Soumen</creatorcontrib><creatorcontrib>Chi, Bo</creatorcontrib><creatorcontrib>Granier, Thierry</creatorcontrib><creatorcontrib>Qi, Ting</creatorcontrib><creatorcontrib>Maurizot, Victor</creatorcontrib><creatorcontrib>Huc, Ivan</creatorcontrib><title>Designing cooperatively folded abiotic uni- and multimolecular helix bundles</title><title>Nature chemistry</title><addtitle>Nature Chem</addtitle><addtitle>Nat Chem</addtitle><description>Abiotic foldamers, that is foldamers that have backbones chemically remote from peptidic and nucleotidic skeletons, may give access to shapes and functions different to those of peptides and nucleotides. However, design methodologies towards abiotic tertiary and quaternary structures are yet to be developed. Here we report rationally designed interactional patterns to guide the folding and assembly of abiotic helix bundles. Computational design facilitated the introduction of hydrogen-bonding functionalities at defined locations on the aromatic amide backbones that promote cooperative folding into helix–turn–helix motifs in organic solvents. The hydrogen-bond-directed aggregation of helices not linked by a turn unit produced several thermodynamically and kinetically stable homochiral dimeric and trimeric bundles with structures that are distinct from the designed helix–turn–helix. Relative helix orientation within the bundles may be changed from parallel to tilted on subtle solvent variations. Altogether, these results prefigure the richness and uniqueness of abiotic tertiary structure behaviour.
Rationally designed arrays of hydrogen bonds between aromatic oligoamide segments have now been shown to generate abiotic helix-turn-helix and unexpected dimeric and trimeric helix bundle motifs. These structures show kinetic and thermodynamic stability, and cooperative folding in nonpolar solvents.</description><subject>639/638/45/470</subject><subject>639/638/541/966</subject><subject>Analytical Chemistry</subject><subject>Biochemistry</subject><subject>Bundles</subject><subject>Bundling</subject><subject>Chemical bonds</subject><subject>Chemical Sciences</subject><subject>Chemistry</subject><subject>Chemistry/Food Science</subject><subject>Computer applications</subject><subject>Design</subject><subject>Folding</subject><subject>Helices</subject><subject>Hydrogen bonding</subject><subject>Inorganic Chemistry</subject><subject>Nucleotides</subject><subject>Organic Chemistry</subject><subject>Organic solvents</subject><subject>Peptides</subject><subject>Physical Chemistry</subject><subject>Protein structure</subject><subject>Solvents</subject><subject>Tertiary structure</subject><subject>Uniqueness</subject><issn>1755-4330</issn><issn>1755-4349</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNpl0U9v2yAYBnA0tVrTbJd9gMpSL2srd2CMgWPV_1KkXrYzwvh1QoUhBTtqvv2cuoum9gSCnx5e9CD0g-BLgqn45c0KustCsPILmhHOWF7SUh7s9xQfoeOUnjGuGCXVV3RUyIJVDIsZWtxAsktv_TIzIawh6t5uwG2zNrgGmkzXNvTWZIO3eaZ9k3WD620XHJjB6ZitwNnXrB584yB9Q4etdgm-v69z9Ofu9vf1Q754un-8vlrkhhLW5wyXheQgCMcSJG5oLRsja6kxr2tTEIpLgluuCa1BcMNaU8hKmwoqEAKkoXN0NuWutFPraDsdtypoqx6uFmp3hokohRR8Q0b7c7LrGF4GSL3qbDLgnPYQhqSI5IITwXg10tMP9DkM0Y8_mRSXhNJRnU_KxJBShHY_AcFq14d660Pt-hjxyXvkUHfQ7Om_AkZwMYE0XvklxP_e_Bz3FwEzlAo</recordid><startdate>20180101</startdate><enddate>20180101</enddate><creator>De, Soumen</creator><creator>Chi, Bo</creator><creator>Granier, Thierry</creator><creator>Qi, Ting</creator><creator>Maurizot, Victor</creator><creator>Huc, Ivan</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QR</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0003-4674-9183</orcidid><orcidid>https://orcid.org/0000-0001-6104-796X</orcidid><orcidid>https://orcid.org/0000-0001-7036-9696</orcidid><orcidid>https://orcid.org/0000-0003-1347-2608</orcidid><orcidid>https://orcid.org/0000-0002-7900-7285</orcidid><orcidid>https://orcid.org/0000-0002-4101-1860</orcidid></search><sort><creationdate>20180101</creationdate><title>Designing cooperatively folded abiotic uni- and multimolecular helix bundles</title><author>De, Soumen ; Chi, Bo ; Granier, Thierry ; Qi, Ting ; Maurizot, Victor ; Huc, Ivan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c315t-504297e81709e90d3b9dc9b9a07bbc2130410f7a13be87c5fc296ac6e6e88e9c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>639/638/45/470</topic><topic>639/638/541/966</topic><topic>Analytical Chemistry</topic><topic>Biochemistry</topic><topic>Bundles</topic><topic>Bundling</topic><topic>Chemical bonds</topic><topic>Chemical Sciences</topic><topic>Chemistry</topic><topic>Chemistry/Food Science</topic><topic>Computer applications</topic><topic>Design</topic><topic>Folding</topic><topic>Helices</topic><topic>Hydrogen bonding</topic><topic>Inorganic Chemistry</topic><topic>Nucleotides</topic><topic>Organic Chemistry</topic><topic>Organic solvents</topic><topic>Peptides</topic><topic>Physical Chemistry</topic><topic>Protein structure</topic><topic>Solvents</topic><topic>Tertiary structure</topic><topic>Uniqueness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>De, Soumen</creatorcontrib><creatorcontrib>Chi, Bo</creatorcontrib><creatorcontrib>Granier, Thierry</creatorcontrib><creatorcontrib>Qi, Ting</creatorcontrib><creatorcontrib>Maurizot, Victor</creatorcontrib><creatorcontrib>Huc, Ivan</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Chemoreception Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials science collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Nature chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>De, Soumen</au><au>Chi, Bo</au><au>Granier, Thierry</au><au>Qi, Ting</au><au>Maurizot, Victor</au><au>Huc, Ivan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Designing cooperatively folded abiotic uni- and multimolecular helix bundles</atitle><jtitle>Nature chemistry</jtitle><stitle>Nature Chem</stitle><addtitle>Nat Chem</addtitle><date>2018-01-01</date><risdate>2018</risdate><volume>10</volume><issue>1</issue><spage>51</spage><epage>57</epage><pages>51-57</pages><issn>1755-4330</issn><eissn>1755-4349</eissn><abstract>Abiotic foldamers, that is foldamers that have backbones chemically remote from peptidic and nucleotidic skeletons, may give access to shapes and functions different to those of peptides and nucleotides. However, design methodologies towards abiotic tertiary and quaternary structures are yet to be developed. Here we report rationally designed interactional patterns to guide the folding and assembly of abiotic helix bundles. Computational design facilitated the introduction of hydrogen-bonding functionalities at defined locations on the aromatic amide backbones that promote cooperative folding into helix–turn–helix motifs in organic solvents. The hydrogen-bond-directed aggregation of helices not linked by a turn unit produced several thermodynamically and kinetically stable homochiral dimeric and trimeric bundles with structures that are distinct from the designed helix–turn–helix. Relative helix orientation within the bundles may be changed from parallel to tilted on subtle solvent variations. Altogether, these results prefigure the richness and uniqueness of abiotic tertiary structure behaviour.
Rationally designed arrays of hydrogen bonds between aromatic oligoamide segments have now been shown to generate abiotic helix-turn-helix and unexpected dimeric and trimeric helix bundle motifs. These structures show kinetic and thermodynamic stability, and cooperative folding in nonpolar solvents.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>29256508</pmid><doi>10.1038/nchem.2854</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0003-4674-9183</orcidid><orcidid>https://orcid.org/0000-0001-6104-796X</orcidid><orcidid>https://orcid.org/0000-0001-7036-9696</orcidid><orcidid>https://orcid.org/0000-0003-1347-2608</orcidid><orcidid>https://orcid.org/0000-0002-7900-7285</orcidid><orcidid>https://orcid.org/0000-0002-4101-1860</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1755-4330 |
ispartof | Nature chemistry, 2018-01, Vol.10 (1), p.51-57 |
issn | 1755-4330 1755-4349 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_01848987v1 |
source | Springer Nature - Complete Springer Journals; Nature |
subjects | 639/638/45/470 639/638/541/966 Analytical Chemistry Biochemistry Bundles Bundling Chemical bonds Chemical Sciences Chemistry Chemistry/Food Science Computer applications Design Folding Helices Hydrogen bonding Inorganic Chemistry Nucleotides Organic Chemistry Organic solvents Peptides Physical Chemistry Protein structure Solvents Tertiary structure Uniqueness |
title | Designing cooperatively folded abiotic uni- and multimolecular helix bundles |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T21%3A28%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Designing%20cooperatively%20folded%20abiotic%20uni-%20and%20multimolecular%20helix%20bundles&rft.jtitle=Nature%20chemistry&rft.au=De,%20Soumen&rft.date=2018-01-01&rft.volume=10&rft.issue=1&rft.spage=51&rft.epage=57&rft.pages=51-57&rft.issn=1755-4330&rft.eissn=1755-4349&rft_id=info:doi/10.1038/nchem.2854&rft_dat=%3Cproquest_hal_p%3E1978718576%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1978779133&rft_id=info:pmid/29256508&rfr_iscdi=true |