Fast and robust duplicate image detection on the web

Social media intelligence is interested in detecting the massive propagation of similar visual content. It can be seen, under certain conditions, as a problem of detecting near duplicate images in a stream of web data. However, in the context considered, it requires not only an efficient indexing an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Multimedia tools and applications 2017-05, Vol.76 (9), p.11839-11858
Hauptverfasser: Gadeski, Etienne, Le Borgne, Hervé, Popescu, Adrian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 11858
container_issue 9
container_start_page 11839
container_title Multimedia tools and applications
container_volume 76
creator Gadeski, Etienne
Le Borgne, Hervé
Popescu, Adrian
description Social media intelligence is interested in detecting the massive propagation of similar visual content. It can be seen, under certain conditions, as a problem of detecting near duplicate images in a stream of web data. However, in the context considered, it requires not only an efficient indexing and searching algorithm but also to be fast to compute the image description, since the total time of description and searching must be short enough to satisfy the constraint induced by the web stream flow rate. While most of methods of the state of the art focus on the efficiency at searching time, we propose a new descriptor satisfying the aforementioned requirements. We evaluate our method on two different datasets with the use of different sets of distractor images, leading to large-scale image collections (up to 100 million images). We compare our method to the state of the art and show it exhibits among the best detection performances but is much faster (one to two orders of magnitude).
doi_str_mv 10.1007/s11042-016-3619-4
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01845526v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1899613320</sourcerecordid><originalsourceid>FETCH-LOGICAL-c393t-3f871df6ab2926868d494f8fbe3a32c98ef39a91465dabf4d30cbc49ced13b0c3</originalsourceid><addsrcrecordid>eNp1kE9LAzEQxYMoWKsfwNuCJw_RTJLNJsdSrBUWvOg5ZPOn3VJ3a7Kr-O1NWREvwsAMw-89Hg-hayB3QEh1nwAIp5iAwEyAwvwEzaCsGK4qCqf5ZpLgqiRwji5S2pEMlpTPEF-ZNBSmc0XsmzGfbjzsW2sGX7RvZuML5wdvh7bvijzD1hefvrlEZ8Hsk7_62XP0unp4Wa5x_fz4tFzU2DLFBsyCrMAFYRqqqJBCOq54kKHxzDBqlfSBKaOAi9KZJnDHiG0sV9Y7YA2xbI5uJ9-t2etDzIHil-5Nq9eLWh9_BCQvSyo-ILM3E3uI_fvo06B3_Ri7HE-DVEoAY5RkCibKxj6l6MOvLRB9LFJPRWZnoY9Fap41dNKkzHYbH_84_yv6Bs_gc8s</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1899613320</pqid></control><display><type>article</type><title>Fast and robust duplicate image detection on the web</title><source>SpringerLink Journals</source><creator>Gadeski, Etienne ; Le Borgne, Hervé ; Popescu, Adrian</creator><creatorcontrib>Gadeski, Etienne ; Le Borgne, Hervé ; Popescu, Adrian</creatorcontrib><description>Social media intelligence is interested in detecting the massive propagation of similar visual content. It can be seen, under certain conditions, as a problem of detecting near duplicate images in a stream of web data. However, in the context considered, it requires not only an efficient indexing and searching algorithm but also to be fast to compute the image description, since the total time of description and searching must be short enough to satisfy the constraint induced by the web stream flow rate. While most of methods of the state of the art focus on the efficiency at searching time, we propose a new descriptor satisfying the aforementioned requirements. We evaluate our method on two different datasets with the use of different sets of distractor images, leading to large-scale image collections (up to 100 million images). We compare our method to the state of the art and show it exhibits among the best detection performances but is much faster (one to two orders of magnitude).</description><identifier>ISSN: 1380-7501</identifier><identifier>EISSN: 1573-7721</identifier><identifier>DOI: 10.1007/s11042-016-3619-4</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Computer Communication Networks ; Computer Science ; Data Structures and Information Theory ; Digital media ; Efficiency ; Flow velocity ; Image detection ; Image retrieval ; Methods ; Multimedia ; Multimedia Information Systems ; Propagation ; Reproduction (copying) ; Search algorithms ; Signal and Image Processing ; Social networks ; Special Purpose and Application-Based Systems</subject><ispartof>Multimedia tools and applications, 2017-05, Vol.76 (9), p.11839-11858</ispartof><rights>Springer Science+Business Media New York 2016</rights><rights>Multimedia Tools and Applications is a copyright of Springer, 2017.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c393t-3f871df6ab2926868d494f8fbe3a32c98ef39a91465dabf4d30cbc49ced13b0c3</citedby><cites>FETCH-LOGICAL-c393t-3f871df6ab2926868d494f8fbe3a32c98ef39a91465dabf4d30cbc49ced13b0c3</cites><orcidid>0000-0003-0520-8436</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11042-016-3619-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11042-016-3619-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,777,781,882,27905,27906,41469,42538,51300</link.rule.ids><backlink>$$Uhttps://hal.science/hal-01845526$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Gadeski, Etienne</creatorcontrib><creatorcontrib>Le Borgne, Hervé</creatorcontrib><creatorcontrib>Popescu, Adrian</creatorcontrib><title>Fast and robust duplicate image detection on the web</title><title>Multimedia tools and applications</title><addtitle>Multimed Tools Appl</addtitle><description>Social media intelligence is interested in detecting the massive propagation of similar visual content. It can be seen, under certain conditions, as a problem of detecting near duplicate images in a stream of web data. However, in the context considered, it requires not only an efficient indexing and searching algorithm but also to be fast to compute the image description, since the total time of description and searching must be short enough to satisfy the constraint induced by the web stream flow rate. While most of methods of the state of the art focus on the efficiency at searching time, we propose a new descriptor satisfying the aforementioned requirements. We evaluate our method on two different datasets with the use of different sets of distractor images, leading to large-scale image collections (up to 100 million images). We compare our method to the state of the art and show it exhibits among the best detection performances but is much faster (one to two orders of magnitude).</description><subject>Computer Communication Networks</subject><subject>Computer Science</subject><subject>Data Structures and Information Theory</subject><subject>Digital media</subject><subject>Efficiency</subject><subject>Flow velocity</subject><subject>Image detection</subject><subject>Image retrieval</subject><subject>Methods</subject><subject>Multimedia</subject><subject>Multimedia Information Systems</subject><subject>Propagation</subject><subject>Reproduction (copying)</subject><subject>Search algorithms</subject><subject>Signal and Image Processing</subject><subject>Social networks</subject><subject>Special Purpose and Application-Based Systems</subject><issn>1380-7501</issn><issn>1573-7721</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1kE9LAzEQxYMoWKsfwNuCJw_RTJLNJsdSrBUWvOg5ZPOn3VJ3a7Kr-O1NWREvwsAMw-89Hg-hayB3QEh1nwAIp5iAwEyAwvwEzaCsGK4qCqf5ZpLgqiRwji5S2pEMlpTPEF-ZNBSmc0XsmzGfbjzsW2sGX7RvZuML5wdvh7bvijzD1hefvrlEZ8Hsk7_62XP0unp4Wa5x_fz4tFzU2DLFBsyCrMAFYRqqqJBCOq54kKHxzDBqlfSBKaOAi9KZJnDHiG0sV9Y7YA2xbI5uJ9-t2etDzIHil-5Nq9eLWh9_BCQvSyo-ILM3E3uI_fvo06B3_Ri7HE-DVEoAY5RkCibKxj6l6MOvLRB9LFJPRWZnoY9Fap41dNKkzHYbH_84_yv6Bs_gc8s</recordid><startdate>20170501</startdate><enddate>20170501</enddate><creator>Gadeski, Etienne</creator><creator>Le Borgne, Hervé</creator><creator>Popescu, Adrian</creator><general>Springer US</general><general>Springer Nature B.V</general><general>Springer Verlag</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2O</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0003-0520-8436</orcidid></search><sort><creationdate>20170501</creationdate><title>Fast and robust duplicate image detection on the web</title><author>Gadeski, Etienne ; Le Borgne, Hervé ; Popescu, Adrian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c393t-3f871df6ab2926868d494f8fbe3a32c98ef39a91465dabf4d30cbc49ced13b0c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Computer Communication Networks</topic><topic>Computer Science</topic><topic>Data Structures and Information Theory</topic><topic>Digital media</topic><topic>Efficiency</topic><topic>Flow velocity</topic><topic>Image detection</topic><topic>Image retrieval</topic><topic>Methods</topic><topic>Multimedia</topic><topic>Multimedia Information Systems</topic><topic>Propagation</topic><topic>Reproduction (copying)</topic><topic>Search algorithms</topic><topic>Signal and Image Processing</topic><topic>Social networks</topic><topic>Special Purpose and Application-Based Systems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gadeski, Etienne</creatorcontrib><creatorcontrib>Le Borgne, Hervé</creatorcontrib><creatorcontrib>Popescu, Adrian</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Multimedia tools and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gadeski, Etienne</au><au>Le Borgne, Hervé</au><au>Popescu, Adrian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fast and robust duplicate image detection on the web</atitle><jtitle>Multimedia tools and applications</jtitle><stitle>Multimed Tools Appl</stitle><date>2017-05-01</date><risdate>2017</risdate><volume>76</volume><issue>9</issue><spage>11839</spage><epage>11858</epage><pages>11839-11858</pages><issn>1380-7501</issn><eissn>1573-7721</eissn><abstract>Social media intelligence is interested in detecting the massive propagation of similar visual content. It can be seen, under certain conditions, as a problem of detecting near duplicate images in a stream of web data. However, in the context considered, it requires not only an efficient indexing and searching algorithm but also to be fast to compute the image description, since the total time of description and searching must be short enough to satisfy the constraint induced by the web stream flow rate. While most of methods of the state of the art focus on the efficiency at searching time, we propose a new descriptor satisfying the aforementioned requirements. We evaluate our method on two different datasets with the use of different sets of distractor images, leading to large-scale image collections (up to 100 million images). We compare our method to the state of the art and show it exhibits among the best detection performances but is much faster (one to two orders of magnitude).</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11042-016-3619-4</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0003-0520-8436</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1380-7501
ispartof Multimedia tools and applications, 2017-05, Vol.76 (9), p.11839-11858
issn 1380-7501
1573-7721
language eng
recordid cdi_hal_primary_oai_HAL_hal_01845526v1
source SpringerLink Journals
subjects Computer Communication Networks
Computer Science
Data Structures and Information Theory
Digital media
Efficiency
Flow velocity
Image detection
Image retrieval
Methods
Multimedia
Multimedia Information Systems
Propagation
Reproduction (copying)
Search algorithms
Signal and Image Processing
Social networks
Special Purpose and Application-Based Systems
title Fast and robust duplicate image detection on the web
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T09%3A50%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fast%20and%20robust%20duplicate%20image%20detection%20on%20the%20web&rft.jtitle=Multimedia%20tools%20and%20applications&rft.au=Gadeski,%20Etienne&rft.date=2017-05-01&rft.volume=76&rft.issue=9&rft.spage=11839&rft.epage=11858&rft.pages=11839-11858&rft.issn=1380-7501&rft.eissn=1573-7721&rft_id=info:doi/10.1007/s11042-016-3619-4&rft_dat=%3Cproquest_hal_p%3E1899613320%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1899613320&rft_id=info:pmid/&rfr_iscdi=true