Design of Electrically Conductive Structural Composites by Modulating Aligned CVD-Grown Carbon Nanotube Length on Glass Fibers

Function-integration in glass fiber (GF) reinforced polymer composites is highly desired for developing lightweight structures and devices with improved performance and structural health monitoring. In this study, homogeneously aligned carbon nanotube (CNT) shell was in situ grafted on GF by chemica...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied materials & interfaces 2017-01, Vol.9 (3), p.2948-2958
Hauptverfasser: He, Delong, Fan, Benhui, Zhao, Hang, Lu, Xiaoxin, Yang, Minhao, Liu, Yu, Bai, Jinbo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2958
container_issue 3
container_start_page 2948
container_title ACS applied materials & interfaces
container_volume 9
creator He, Delong
Fan, Benhui
Zhao, Hang
Lu, Xiaoxin
Yang, Minhao
Liu, Yu
Bai, Jinbo
description Function-integration in glass fiber (GF) reinforced polymer composites is highly desired for developing lightweight structures and devices with improved performance and structural health monitoring. In this study, homogeneously aligned carbon nanotube (CNT) shell was in situ grafted on GF by chemical vapor deposition (CVD). It was demonstrated that the CNT shell thickness and weight fraction can be modulated by controlling the CVD conditions. The obtained hierarchical CNTs-GF/epoxy composites show highly improved electrical conductivity and thermo-mechanical and flexural properties. The composite through-plane and in-plane electrical conductivities increase from a quasi-isolator value to ∼3.5 and 100 S/m, respectively, when the weight fraction of CNTs grafted on GF fabric varies from 0% to 7%, respectively. Meanwhile, the composite storage modulus and flexural modulus and strength improve as high as 12%, 21%, and 26%, respectively, with 100% retention of the glass transition temperature. The reinforcing mechanisms are investigated by analyzing the composite microstructure and the interfacial adhesion and wetting properties of CNTs-GF hybrids. Moreover, the specific damage-related resistance variation characteristics could be employed to in situ monitor the structural health state of the composites. The outstanding electrical and structural properties of the CNTs-GF composites were due to the specific interfacial and interphase structures created by homogeneously grafting aligned CNTs on each GF of the fabric.
doi_str_mv 10.1021/acsami.6b13397
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01842499v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1856597602</sourcerecordid><originalsourceid>FETCH-LOGICAL-a470t-d785d78f5ac5e631d67eef6919f2c35aa197c3a58bc736860541cf8f9a71bb503</originalsourceid><addsrcrecordid>eNp1kU1v1DAURS0EoqWwZYm8pEgZ7CR24uUobadIAyz42FrPjjN15cSD7RTNht9eV5nOjoXlp6vzzuJdhN5TsqKkpJ9BRxjtiitaVaJ5gc6pqOuiLVn58jTX9Rl6E-M9IbwqCXuNzsqWMM4IO0f_rky0uwn7AV87o1OwGpw74M5P_ayTfTD4Rwp5mgO4nI57H20yEasD_ur72UGy0w6vXZaYHne_r4pN8H8n3EFQfsLfYPJpVgZvzbRLdzhHGwcx4hurTIhv0asBXDTvjv8F-nVz_bO7LbbfN1-69baAuiGp6JuW5Tcw0Mzwiva8MWbggoqh1BUDoKLRFbBW6abiLSespnpoBwENVYqR6gJdLt47cHIf7AjhID1YebveyqeM0LYuayEeaGY_Luw--D-ziUmONmrjHEzGz1HSNt9ONJyUGV0tqA4-xmCGk5sS-dSPXPqRx37ywoeje1aj6U_4cyEZ-LQAeVHe-zlM-Sz_sz0CcAia7A</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1856597602</pqid></control><display><type>article</type><title>Design of Electrically Conductive Structural Composites by Modulating Aligned CVD-Grown Carbon Nanotube Length on Glass Fibers</title><source>American Chemical Society</source><creator>He, Delong ; Fan, Benhui ; Zhao, Hang ; Lu, Xiaoxin ; Yang, Minhao ; Liu, Yu ; Bai, Jinbo</creator><creatorcontrib>He, Delong ; Fan, Benhui ; Zhao, Hang ; Lu, Xiaoxin ; Yang, Minhao ; Liu, Yu ; Bai, Jinbo</creatorcontrib><description>Function-integration in glass fiber (GF) reinforced polymer composites is highly desired for developing lightweight structures and devices with improved performance and structural health monitoring. In this study, homogeneously aligned carbon nanotube (CNT) shell was in situ grafted on GF by chemical vapor deposition (CVD). It was demonstrated that the CNT shell thickness and weight fraction can be modulated by controlling the CVD conditions. The obtained hierarchical CNTs-GF/epoxy composites show highly improved electrical conductivity and thermo-mechanical and flexural properties. The composite through-plane and in-plane electrical conductivities increase from a quasi-isolator value to ∼3.5 and 100 S/m, respectively, when the weight fraction of CNTs grafted on GF fabric varies from 0% to 7%, respectively. Meanwhile, the composite storage modulus and flexural modulus and strength improve as high as 12%, 21%, and 26%, respectively, with 100% retention of the glass transition temperature. The reinforcing mechanisms are investigated by analyzing the composite microstructure and the interfacial adhesion and wetting properties of CNTs-GF hybrids. Moreover, the specific damage-related resistance variation characteristics could be employed to in situ monitor the structural health state of the composites. The outstanding electrical and structural properties of the CNTs-GF composites were due to the specific interfacial and interphase structures created by homogeneously grafting aligned CNTs on each GF of the fabric.</description><identifier>ISSN: 1944-8244</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.6b13397</identifier><identifier>PMID: 28056505</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Condensed Matter ; Materials Science ; Physics</subject><ispartof>ACS applied materials &amp; interfaces, 2017-01, Vol.9 (3), p.2948-2958</ispartof><rights>Copyright © 2017 American Chemical Society</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a470t-d785d78f5ac5e631d67eef6919f2c35aa197c3a58bc736860541cf8f9a71bb503</citedby><cites>FETCH-LOGICAL-a470t-d785d78f5ac5e631d67eef6919f2c35aa197c3a58bc736860541cf8f9a71bb503</cites><orcidid>0000-0003-0852-7950 ; 0000-0002-6581-0157 ; 0000-0002-9947-6177</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsami.6b13397$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsami.6b13397$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,776,780,881,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28056505$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-01842499$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>He, Delong</creatorcontrib><creatorcontrib>Fan, Benhui</creatorcontrib><creatorcontrib>Zhao, Hang</creatorcontrib><creatorcontrib>Lu, Xiaoxin</creatorcontrib><creatorcontrib>Yang, Minhao</creatorcontrib><creatorcontrib>Liu, Yu</creatorcontrib><creatorcontrib>Bai, Jinbo</creatorcontrib><title>Design of Electrically Conductive Structural Composites by Modulating Aligned CVD-Grown Carbon Nanotube Length on Glass Fibers</title><title>ACS applied materials &amp; interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>Function-integration in glass fiber (GF) reinforced polymer composites is highly desired for developing lightweight structures and devices with improved performance and structural health monitoring. In this study, homogeneously aligned carbon nanotube (CNT) shell was in situ grafted on GF by chemical vapor deposition (CVD). It was demonstrated that the CNT shell thickness and weight fraction can be modulated by controlling the CVD conditions. The obtained hierarchical CNTs-GF/epoxy composites show highly improved electrical conductivity and thermo-mechanical and flexural properties. The composite through-plane and in-plane electrical conductivities increase from a quasi-isolator value to ∼3.5 and 100 S/m, respectively, when the weight fraction of CNTs grafted on GF fabric varies from 0% to 7%, respectively. Meanwhile, the composite storage modulus and flexural modulus and strength improve as high as 12%, 21%, and 26%, respectively, with 100% retention of the glass transition temperature. The reinforcing mechanisms are investigated by analyzing the composite microstructure and the interfacial adhesion and wetting properties of CNTs-GF hybrids. Moreover, the specific damage-related resistance variation characteristics could be employed to in situ monitor the structural health state of the composites. The outstanding electrical and structural properties of the CNTs-GF composites were due to the specific interfacial and interphase structures created by homogeneously grafting aligned CNTs on each GF of the fabric.</description><subject>Condensed Matter</subject><subject>Materials Science</subject><subject>Physics</subject><issn>1944-8244</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1kU1v1DAURS0EoqWwZYm8pEgZ7CR24uUobadIAyz42FrPjjN15cSD7RTNht9eV5nOjoXlp6vzzuJdhN5TsqKkpJ9BRxjtiitaVaJ5gc6pqOuiLVn58jTX9Rl6E-M9IbwqCXuNzsqWMM4IO0f_rky0uwn7AV87o1OwGpw74M5P_ayTfTD4Rwp5mgO4nI57H20yEasD_ur72UGy0w6vXZaYHne_r4pN8H8n3EFQfsLfYPJpVgZvzbRLdzhHGwcx4hurTIhv0asBXDTvjv8F-nVz_bO7LbbfN1-69baAuiGp6JuW5Tcw0Mzwiva8MWbggoqh1BUDoKLRFbBW6abiLSespnpoBwENVYqR6gJdLt47cHIf7AjhID1YebveyqeM0LYuayEeaGY_Luw--D-ziUmONmrjHEzGz1HSNt9ONJyUGV0tqA4-xmCGk5sS-dSPXPqRx37ywoeje1aj6U_4cyEZ-LQAeVHe-zlM-Sz_sz0CcAia7A</recordid><startdate>20170125</startdate><enddate>20170125</enddate><creator>He, Delong</creator><creator>Fan, Benhui</creator><creator>Zhao, Hang</creator><creator>Lu, Xiaoxin</creator><creator>Yang, Minhao</creator><creator>Liu, Yu</creator><creator>Bai, Jinbo</creator><general>American Chemical Society</general><general>Washington, D.C. : American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0003-0852-7950</orcidid><orcidid>https://orcid.org/0000-0002-6581-0157</orcidid><orcidid>https://orcid.org/0000-0002-9947-6177</orcidid></search><sort><creationdate>20170125</creationdate><title>Design of Electrically Conductive Structural Composites by Modulating Aligned CVD-Grown Carbon Nanotube Length on Glass Fibers</title><author>He, Delong ; Fan, Benhui ; Zhao, Hang ; Lu, Xiaoxin ; Yang, Minhao ; Liu, Yu ; Bai, Jinbo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a470t-d785d78f5ac5e631d67eef6919f2c35aa197c3a58bc736860541cf8f9a71bb503</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Condensed Matter</topic><topic>Materials Science</topic><topic>Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>He, Delong</creatorcontrib><creatorcontrib>Fan, Benhui</creatorcontrib><creatorcontrib>Zhao, Hang</creatorcontrib><creatorcontrib>Lu, Xiaoxin</creatorcontrib><creatorcontrib>Yang, Minhao</creatorcontrib><creatorcontrib>Liu, Yu</creatorcontrib><creatorcontrib>Bai, Jinbo</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>ACS applied materials &amp; interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>He, Delong</au><au>Fan, Benhui</au><au>Zhao, Hang</au><au>Lu, Xiaoxin</au><au>Yang, Minhao</au><au>Liu, Yu</au><au>Bai, Jinbo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Design of Electrically Conductive Structural Composites by Modulating Aligned CVD-Grown Carbon Nanotube Length on Glass Fibers</atitle><jtitle>ACS applied materials &amp; interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2017-01-25</date><risdate>2017</risdate><volume>9</volume><issue>3</issue><spage>2948</spage><epage>2958</epage><pages>2948-2958</pages><issn>1944-8244</issn><eissn>1944-8252</eissn><abstract>Function-integration in glass fiber (GF) reinforced polymer composites is highly desired for developing lightweight structures and devices with improved performance and structural health monitoring. In this study, homogeneously aligned carbon nanotube (CNT) shell was in situ grafted on GF by chemical vapor deposition (CVD). It was demonstrated that the CNT shell thickness and weight fraction can be modulated by controlling the CVD conditions. The obtained hierarchical CNTs-GF/epoxy composites show highly improved electrical conductivity and thermo-mechanical and flexural properties. The composite through-plane and in-plane electrical conductivities increase from a quasi-isolator value to ∼3.5 and 100 S/m, respectively, when the weight fraction of CNTs grafted on GF fabric varies from 0% to 7%, respectively. Meanwhile, the composite storage modulus and flexural modulus and strength improve as high as 12%, 21%, and 26%, respectively, with 100% retention of the glass transition temperature. The reinforcing mechanisms are investigated by analyzing the composite microstructure and the interfacial adhesion and wetting properties of CNTs-GF hybrids. Moreover, the specific damage-related resistance variation characteristics could be employed to in situ monitor the structural health state of the composites. The outstanding electrical and structural properties of the CNTs-GF composites were due to the specific interfacial and interphase structures created by homogeneously grafting aligned CNTs on each GF of the fabric.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>28056505</pmid><doi>10.1021/acsami.6b13397</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-0852-7950</orcidid><orcidid>https://orcid.org/0000-0002-6581-0157</orcidid><orcidid>https://orcid.org/0000-0002-9947-6177</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1944-8244
ispartof ACS applied materials & interfaces, 2017-01, Vol.9 (3), p.2948-2958
issn 1944-8244
1944-8252
language eng
recordid cdi_hal_primary_oai_HAL_hal_01842499v1
source American Chemical Society
subjects Condensed Matter
Materials Science
Physics
title Design of Electrically Conductive Structural Composites by Modulating Aligned CVD-Grown Carbon Nanotube Length on Glass Fibers
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T00%3A42%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Design%20of%20Electrically%20Conductive%20Structural%20Composites%20by%20Modulating%20Aligned%20CVD-Grown%20Carbon%20Nanotube%20Length%20on%20Glass%20Fibers&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=He,%20Delong&rft.date=2017-01-25&rft.volume=9&rft.issue=3&rft.spage=2948&rft.epage=2958&rft.pages=2948-2958&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.6b13397&rft_dat=%3Cproquest_hal_p%3E1856597602%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1856597602&rft_id=info:pmid/28056505&rfr_iscdi=true