A training-resistant anomaly detection system
Modern network intrusion detection systems rely on machine learning techniques to detect traffic anomalies and thus intruders. However, the ability to learn the network behaviour in real-time comes at a cost: malicious software can interfere with the learning process, and teach the intrusion detecti...
Gespeichert in:
Veröffentlicht in: | Computers & security 2018-07, Vol.76, p.1-11 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 11 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | Computers & security |
container_volume | 76 |
creator | Muller, Steve Lancrenon, Jean Harpes, Carlo Le Traon, Yves Gombault, Sylvain Bonnin, Jean-Marie |
description | Modern network intrusion detection systems rely on machine learning techniques to detect traffic anomalies and thus intruders. However, the ability to learn the network behaviour in real-time comes at a cost: malicious software can interfere with the learning process, and teach the intrusion detection system to accept dangerous traffic. This paper presents an intrusion detection system (IDS) that is able to detect common network attacks including but not limited to, denial-of-service, bot nets, intrusions, and network scans. With the help of the proposed example IDS, we show to what extent the training attack (and more sophisticated variants of it) has an impact on machine learning based detection schemes, and how it can be detected. |
doi_str_mv | 10.1016/j.cose.2018.02.015 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01836374v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S016740481830155X</els_id><sourcerecordid>2094501554</sourcerecordid><originalsourceid>FETCH-LOGICAL-c406t-deaa4791bedffbada9978c44aee3037c88ac61acc2c7c9c5c75de760f0b98523</originalsourceid><addsrcrecordid>eNp9kM9LwzAUx4MoOKf_gKeCJw-tL2napOBlDHXCwMvuIUtfNWVrZpIN9t-bUvHo6cHj830_PoTcUygo0PqpL4wLWDCgsgBWAK0uyIxKwfKagbwkswSJnAOX1-QmhB6AilrKGckXWfTaDnb4zD0GG6IeYqYHt9e7c9ZiRBOtG7JwDhH3t-Sq07uAd791TjavL5vlKl9_vL0vF-vccKhj3qLWXDR0i23XbXWrm0ZIw7lGLKEURkptaqqNYUaYxlRGVC2KGjrYNrJi5Zw8TmO_9E4dvN1rf1ZOW7VarNXYS2-WdSn4iSb2YWIP3n0fMUTVu6Mf0nWKQcOrpKLiiWITZbwLwWP3N5aCGg2qXo0G1WhQAUsbqhR6nkKYXj1Z9CoYi4PB1vqkRbXO_hf_AWdueUE</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2094501554</pqid></control><display><type>article</type><title>A training-resistant anomaly detection system</title><source>Elsevier ScienceDirect Journals</source><creator>Muller, Steve ; Lancrenon, Jean ; Harpes, Carlo ; Le Traon, Yves ; Gombault, Sylvain ; Bonnin, Jean-Marie</creator><creatorcontrib>Muller, Steve ; Lancrenon, Jean ; Harpes, Carlo ; Le Traon, Yves ; Gombault, Sylvain ; Bonnin, Jean-Marie</creatorcontrib><description>Modern network intrusion detection systems rely on machine learning techniques to detect traffic anomalies and thus intruders. However, the ability to learn the network behaviour in real-time comes at a cost: malicious software can interfere with the learning process, and teach the intrusion detection system to accept dangerous traffic. This paper presents an intrusion detection system (IDS) that is able to detect common network attacks including but not limited to, denial-of-service, bot nets, intrusions, and network scans. With the help of the proposed example IDS, we show to what extent the training attack (and more sophisticated variants of it) has an impact on machine learning based detection schemes, and how it can be detected.</description><identifier>ISSN: 0167-4048</identifier><identifier>EISSN: 1872-6208</identifier><identifier>DOI: 10.1016/j.cose.2018.02.015</identifier><language>eng</language><publisher>Amsterdam: Elsevier Ltd</publisher><subject>Anomalies ; Anomaly detection ; Artificial intelligence ; Computer Science ; Cryptography and Security ; Cybersecurity ; Intrusion detection system ; Intrusion detection systems ; Machine learning ; Malware ; Network security ; Studies ; Training attack</subject><ispartof>Computers & security, 2018-07, Vol.76, p.1-11</ispartof><rights>2018 Elsevier Ltd</rights><rights>Copyright Elsevier Sequoia S.A. Jul 2018</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c406t-deaa4791bedffbada9978c44aee3037c88ac61acc2c7c9c5c75de760f0b98523</citedby><cites>FETCH-LOGICAL-c406t-deaa4791bedffbada9978c44aee3037c88ac61acc2c7c9c5c75de760f0b98523</cites><orcidid>0000-0002-2961-7587</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S016740481830155X$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://hal.science/hal-01836374$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Muller, Steve</creatorcontrib><creatorcontrib>Lancrenon, Jean</creatorcontrib><creatorcontrib>Harpes, Carlo</creatorcontrib><creatorcontrib>Le Traon, Yves</creatorcontrib><creatorcontrib>Gombault, Sylvain</creatorcontrib><creatorcontrib>Bonnin, Jean-Marie</creatorcontrib><title>A training-resistant anomaly detection system</title><title>Computers & security</title><description>Modern network intrusion detection systems rely on machine learning techniques to detect traffic anomalies and thus intruders. However, the ability to learn the network behaviour in real-time comes at a cost: malicious software can interfere with the learning process, and teach the intrusion detection system to accept dangerous traffic. This paper presents an intrusion detection system (IDS) that is able to detect common network attacks including but not limited to, denial-of-service, bot nets, intrusions, and network scans. With the help of the proposed example IDS, we show to what extent the training attack (and more sophisticated variants of it) has an impact on machine learning based detection schemes, and how it can be detected.</description><subject>Anomalies</subject><subject>Anomaly detection</subject><subject>Artificial intelligence</subject><subject>Computer Science</subject><subject>Cryptography and Security</subject><subject>Cybersecurity</subject><subject>Intrusion detection system</subject><subject>Intrusion detection systems</subject><subject>Machine learning</subject><subject>Malware</subject><subject>Network security</subject><subject>Studies</subject><subject>Training attack</subject><issn>0167-4048</issn><issn>1872-6208</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kM9LwzAUx4MoOKf_gKeCJw-tL2napOBlDHXCwMvuIUtfNWVrZpIN9t-bUvHo6cHj830_PoTcUygo0PqpL4wLWDCgsgBWAK0uyIxKwfKagbwkswSJnAOX1-QmhB6AilrKGckXWfTaDnb4zD0GG6IeYqYHt9e7c9ZiRBOtG7JwDhH3t-Sq07uAd791TjavL5vlKl9_vL0vF-vccKhj3qLWXDR0i23XbXWrm0ZIw7lGLKEURkptaqqNYUaYxlRGVC2KGjrYNrJi5Zw8TmO_9E4dvN1rf1ZOW7VarNXYS2-WdSn4iSb2YWIP3n0fMUTVu6Mf0nWKQcOrpKLiiWITZbwLwWP3N5aCGg2qXo0G1WhQAUsbqhR6nkKYXj1Z9CoYi4PB1vqkRbXO_hf_AWdueUE</recordid><startdate>201807</startdate><enddate>201807</enddate><creator>Muller, Steve</creator><creator>Lancrenon, Jean</creator><creator>Harpes, Carlo</creator><creator>Le Traon, Yves</creator><creator>Gombault, Sylvain</creator><creator>Bonnin, Jean-Marie</creator><general>Elsevier Ltd</general><general>Elsevier Sequoia S.A</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>K7.</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-2961-7587</orcidid></search><sort><creationdate>201807</creationdate><title>A training-resistant anomaly detection system</title><author>Muller, Steve ; Lancrenon, Jean ; Harpes, Carlo ; Le Traon, Yves ; Gombault, Sylvain ; Bonnin, Jean-Marie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c406t-deaa4791bedffbada9978c44aee3037c88ac61acc2c7c9c5c75de760f0b98523</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Anomalies</topic><topic>Anomaly detection</topic><topic>Artificial intelligence</topic><topic>Computer Science</topic><topic>Cryptography and Security</topic><topic>Cybersecurity</topic><topic>Intrusion detection system</topic><topic>Intrusion detection systems</topic><topic>Machine learning</topic><topic>Malware</topic><topic>Network security</topic><topic>Studies</topic><topic>Training attack</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Muller, Steve</creatorcontrib><creatorcontrib>Lancrenon, Jean</creatorcontrib><creatorcontrib>Harpes, Carlo</creatorcontrib><creatorcontrib>Le Traon, Yves</creatorcontrib><creatorcontrib>Gombault, Sylvain</creatorcontrib><creatorcontrib>Bonnin, Jean-Marie</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Criminal Justice (Alumni)</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Computers & security</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Muller, Steve</au><au>Lancrenon, Jean</au><au>Harpes, Carlo</au><au>Le Traon, Yves</au><au>Gombault, Sylvain</au><au>Bonnin, Jean-Marie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A training-resistant anomaly detection system</atitle><jtitle>Computers & security</jtitle><date>2018-07</date><risdate>2018</risdate><volume>76</volume><spage>1</spage><epage>11</epage><pages>1-11</pages><issn>0167-4048</issn><eissn>1872-6208</eissn><abstract>Modern network intrusion detection systems rely on machine learning techniques to detect traffic anomalies and thus intruders. However, the ability to learn the network behaviour in real-time comes at a cost: malicious software can interfere with the learning process, and teach the intrusion detection system to accept dangerous traffic. This paper presents an intrusion detection system (IDS) that is able to detect common network attacks including but not limited to, denial-of-service, bot nets, intrusions, and network scans. With the help of the proposed example IDS, we show to what extent the training attack (and more sophisticated variants of it) has an impact on machine learning based detection schemes, and how it can be detected.</abstract><cop>Amsterdam</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.cose.2018.02.015</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-2961-7587</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0167-4048 |
ispartof | Computers & security, 2018-07, Vol.76, p.1-11 |
issn | 0167-4048 1872-6208 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_01836374v1 |
source | Elsevier ScienceDirect Journals |
subjects | Anomalies Anomaly detection Artificial intelligence Computer Science Cryptography and Security Cybersecurity Intrusion detection system Intrusion detection systems Machine learning Malware Network security Studies Training attack |
title | A training-resistant anomaly detection system |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T10%3A27%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20training-resistant%20anomaly%20detection%20system&rft.jtitle=Computers%20&%20security&rft.au=Muller,%20Steve&rft.date=2018-07&rft.volume=76&rft.spage=1&rft.epage=11&rft.pages=1-11&rft.issn=0167-4048&rft.eissn=1872-6208&rft_id=info:doi/10.1016/j.cose.2018.02.015&rft_dat=%3Cproquest_hal_p%3E2094501554%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2094501554&rft_id=info:pmid/&rft_els_id=S016740481830155X&rfr_iscdi=true |