A training-resistant anomaly detection system

Modern network intrusion detection systems rely on machine learning techniques to detect traffic anomalies and thus intruders. However, the ability to learn the network behaviour in real-time comes at a cost: malicious software can interfere with the learning process, and teach the intrusion detecti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computers & security 2018-07, Vol.76, p.1-11
Hauptverfasser: Muller, Steve, Lancrenon, Jean, Harpes, Carlo, Le Traon, Yves, Gombault, Sylvain, Bonnin, Jean-Marie
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 11
container_issue
container_start_page 1
container_title Computers & security
container_volume 76
creator Muller, Steve
Lancrenon, Jean
Harpes, Carlo
Le Traon, Yves
Gombault, Sylvain
Bonnin, Jean-Marie
description Modern network intrusion detection systems rely on machine learning techniques to detect traffic anomalies and thus intruders. However, the ability to learn the network behaviour in real-time comes at a cost: malicious software can interfere with the learning process, and teach the intrusion detection system to accept dangerous traffic. This paper presents an intrusion detection system (IDS) that is able to detect common network attacks including but not limited to, denial-of-service, bot nets, intrusions, and network scans. With the help of the proposed example IDS, we show to what extent the training attack (and more sophisticated variants of it) has an impact on machine learning based detection schemes, and how it can be detected.
doi_str_mv 10.1016/j.cose.2018.02.015
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01836374v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S016740481830155X</els_id><sourcerecordid>2094501554</sourcerecordid><originalsourceid>FETCH-LOGICAL-c406t-deaa4791bedffbada9978c44aee3037c88ac61acc2c7c9c5c75de760f0b98523</originalsourceid><addsrcrecordid>eNp9kM9LwzAUx4MoOKf_gKeCJw-tL2napOBlDHXCwMvuIUtfNWVrZpIN9t-bUvHo6cHj830_PoTcUygo0PqpL4wLWDCgsgBWAK0uyIxKwfKagbwkswSJnAOX1-QmhB6AilrKGckXWfTaDnb4zD0GG6IeYqYHt9e7c9ZiRBOtG7JwDhH3t-Sq07uAd791TjavL5vlKl9_vL0vF-vccKhj3qLWXDR0i23XbXWrm0ZIw7lGLKEURkptaqqNYUaYxlRGVC2KGjrYNrJi5Zw8TmO_9E4dvN1rf1ZOW7VarNXYS2-WdSn4iSb2YWIP3n0fMUTVu6Mf0nWKQcOrpKLiiWITZbwLwWP3N5aCGg2qXo0G1WhQAUsbqhR6nkKYXj1Z9CoYi4PB1vqkRbXO_hf_AWdueUE</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2094501554</pqid></control><display><type>article</type><title>A training-resistant anomaly detection system</title><source>Elsevier ScienceDirect Journals</source><creator>Muller, Steve ; Lancrenon, Jean ; Harpes, Carlo ; Le Traon, Yves ; Gombault, Sylvain ; Bonnin, Jean-Marie</creator><creatorcontrib>Muller, Steve ; Lancrenon, Jean ; Harpes, Carlo ; Le Traon, Yves ; Gombault, Sylvain ; Bonnin, Jean-Marie</creatorcontrib><description>Modern network intrusion detection systems rely on machine learning techniques to detect traffic anomalies and thus intruders. However, the ability to learn the network behaviour in real-time comes at a cost: malicious software can interfere with the learning process, and teach the intrusion detection system to accept dangerous traffic. This paper presents an intrusion detection system (IDS) that is able to detect common network attacks including but not limited to, denial-of-service, bot nets, intrusions, and network scans. With the help of the proposed example IDS, we show to what extent the training attack (and more sophisticated variants of it) has an impact on machine learning based detection schemes, and how it can be detected.</description><identifier>ISSN: 0167-4048</identifier><identifier>EISSN: 1872-6208</identifier><identifier>DOI: 10.1016/j.cose.2018.02.015</identifier><language>eng</language><publisher>Amsterdam: Elsevier Ltd</publisher><subject>Anomalies ; Anomaly detection ; Artificial intelligence ; Computer Science ; Cryptography and Security ; Cybersecurity ; Intrusion detection system ; Intrusion detection systems ; Machine learning ; Malware ; Network security ; Studies ; Training attack</subject><ispartof>Computers &amp; security, 2018-07, Vol.76, p.1-11</ispartof><rights>2018 Elsevier Ltd</rights><rights>Copyright Elsevier Sequoia S.A. Jul 2018</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c406t-deaa4791bedffbada9978c44aee3037c88ac61acc2c7c9c5c75de760f0b98523</citedby><cites>FETCH-LOGICAL-c406t-deaa4791bedffbada9978c44aee3037c88ac61acc2c7c9c5c75de760f0b98523</cites><orcidid>0000-0002-2961-7587</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S016740481830155X$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://hal.science/hal-01836374$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Muller, Steve</creatorcontrib><creatorcontrib>Lancrenon, Jean</creatorcontrib><creatorcontrib>Harpes, Carlo</creatorcontrib><creatorcontrib>Le Traon, Yves</creatorcontrib><creatorcontrib>Gombault, Sylvain</creatorcontrib><creatorcontrib>Bonnin, Jean-Marie</creatorcontrib><title>A training-resistant anomaly detection system</title><title>Computers &amp; security</title><description>Modern network intrusion detection systems rely on machine learning techniques to detect traffic anomalies and thus intruders. However, the ability to learn the network behaviour in real-time comes at a cost: malicious software can interfere with the learning process, and teach the intrusion detection system to accept dangerous traffic. This paper presents an intrusion detection system (IDS) that is able to detect common network attacks including but not limited to, denial-of-service, bot nets, intrusions, and network scans. With the help of the proposed example IDS, we show to what extent the training attack (and more sophisticated variants of it) has an impact on machine learning based detection schemes, and how it can be detected.</description><subject>Anomalies</subject><subject>Anomaly detection</subject><subject>Artificial intelligence</subject><subject>Computer Science</subject><subject>Cryptography and Security</subject><subject>Cybersecurity</subject><subject>Intrusion detection system</subject><subject>Intrusion detection systems</subject><subject>Machine learning</subject><subject>Malware</subject><subject>Network security</subject><subject>Studies</subject><subject>Training attack</subject><issn>0167-4048</issn><issn>1872-6208</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kM9LwzAUx4MoOKf_gKeCJw-tL2napOBlDHXCwMvuIUtfNWVrZpIN9t-bUvHo6cHj830_PoTcUygo0PqpL4wLWDCgsgBWAK0uyIxKwfKagbwkswSJnAOX1-QmhB6AilrKGckXWfTaDnb4zD0GG6IeYqYHt9e7c9ZiRBOtG7JwDhH3t-Sq07uAd791TjavL5vlKl9_vL0vF-vccKhj3qLWXDR0i23XbXWrm0ZIw7lGLKEURkptaqqNYUaYxlRGVC2KGjrYNrJi5Zw8TmO_9E4dvN1rf1ZOW7VarNXYS2-WdSn4iSb2YWIP3n0fMUTVu6Mf0nWKQcOrpKLiiWITZbwLwWP3N5aCGg2qXo0G1WhQAUsbqhR6nkKYXj1Z9CoYi4PB1vqkRbXO_hf_AWdueUE</recordid><startdate>201807</startdate><enddate>201807</enddate><creator>Muller, Steve</creator><creator>Lancrenon, Jean</creator><creator>Harpes, Carlo</creator><creator>Le Traon, Yves</creator><creator>Gombault, Sylvain</creator><creator>Bonnin, Jean-Marie</creator><general>Elsevier Ltd</general><general>Elsevier Sequoia S.A</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>K7.</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-2961-7587</orcidid></search><sort><creationdate>201807</creationdate><title>A training-resistant anomaly detection system</title><author>Muller, Steve ; Lancrenon, Jean ; Harpes, Carlo ; Le Traon, Yves ; Gombault, Sylvain ; Bonnin, Jean-Marie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c406t-deaa4791bedffbada9978c44aee3037c88ac61acc2c7c9c5c75de760f0b98523</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Anomalies</topic><topic>Anomaly detection</topic><topic>Artificial intelligence</topic><topic>Computer Science</topic><topic>Cryptography and Security</topic><topic>Cybersecurity</topic><topic>Intrusion detection system</topic><topic>Intrusion detection systems</topic><topic>Machine learning</topic><topic>Malware</topic><topic>Network security</topic><topic>Studies</topic><topic>Training attack</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Muller, Steve</creatorcontrib><creatorcontrib>Lancrenon, Jean</creatorcontrib><creatorcontrib>Harpes, Carlo</creatorcontrib><creatorcontrib>Le Traon, Yves</creatorcontrib><creatorcontrib>Gombault, Sylvain</creatorcontrib><creatorcontrib>Bonnin, Jean-Marie</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Criminal Justice (Alumni)</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Computers &amp; security</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Muller, Steve</au><au>Lancrenon, Jean</au><au>Harpes, Carlo</au><au>Le Traon, Yves</au><au>Gombault, Sylvain</au><au>Bonnin, Jean-Marie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A training-resistant anomaly detection system</atitle><jtitle>Computers &amp; security</jtitle><date>2018-07</date><risdate>2018</risdate><volume>76</volume><spage>1</spage><epage>11</epage><pages>1-11</pages><issn>0167-4048</issn><eissn>1872-6208</eissn><abstract>Modern network intrusion detection systems rely on machine learning techniques to detect traffic anomalies and thus intruders. However, the ability to learn the network behaviour in real-time comes at a cost: malicious software can interfere with the learning process, and teach the intrusion detection system to accept dangerous traffic. This paper presents an intrusion detection system (IDS) that is able to detect common network attacks including but not limited to, denial-of-service, bot nets, intrusions, and network scans. With the help of the proposed example IDS, we show to what extent the training attack (and more sophisticated variants of it) has an impact on machine learning based detection schemes, and how it can be detected.</abstract><cop>Amsterdam</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.cose.2018.02.015</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-2961-7587</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0167-4048
ispartof Computers & security, 2018-07, Vol.76, p.1-11
issn 0167-4048
1872-6208
language eng
recordid cdi_hal_primary_oai_HAL_hal_01836374v1
source Elsevier ScienceDirect Journals
subjects Anomalies
Anomaly detection
Artificial intelligence
Computer Science
Cryptography and Security
Cybersecurity
Intrusion detection system
Intrusion detection systems
Machine learning
Malware
Network security
Studies
Training attack
title A training-resistant anomaly detection system
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T10%3A27%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20training-resistant%20anomaly%20detection%20system&rft.jtitle=Computers%20&%20security&rft.au=Muller,%20Steve&rft.date=2018-07&rft.volume=76&rft.spage=1&rft.epage=11&rft.pages=1-11&rft.issn=0167-4048&rft.eissn=1872-6208&rft_id=info:doi/10.1016/j.cose.2018.02.015&rft_dat=%3Cproquest_hal_p%3E2094501554%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2094501554&rft_id=info:pmid/&rft_els_id=S016740481830155X&rfr_iscdi=true