Bilinear quantum systems on compact graphs: Well-posedness and global exact controllability

A major application of the mathematical concept of graph in quantum mechanics is to model networks of electrical wires or electromagnetic wave-guides. In this paper, we address the dynamics of a particle trapped on such a network in presence of an external electromagnetic field. We study the control...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Automatica (Oxford) 2021-01, Vol.123, p.109324, Article 109324
1. Verfasser: Duca, Alessandro
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 109324
container_title Automatica (Oxford)
container_volume 123
creator Duca, Alessandro
description A major application of the mathematical concept of graph in quantum mechanics is to model networks of electrical wires or electromagnetic wave-guides. In this paper, we address the dynamics of a particle trapped on such a network in presence of an external electromagnetic field. We study the controllability of the motion when the intensity of the field changes over time and plays the role of control. From a mathematical point of view, the dynamics of the particle is modeled by the so-called bilinear Schrödinger equation defined on a graph representing the network. The main purpose of this work is to extend the existing theory for bilinear quantum systems on bounded intervals to the framework of graphs. To this end, we introduce a suitable mathematical setting where to address the controllability of the equation from a theoretical point of view. More precisely, we determine assumptions on the network and on the potential field ensuring its global exact controllability in suitable spaces. Finally, we discuss two applications of our results and their practical implications to two specific problems involving a star-shaped network and a tadpole graph.
doi_str_mv 10.1016/j.automatica.2020.109324
format Article
fullrecord <record><control><sourceid>hal_cross</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01830297v5</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0005109820305240</els_id><sourcerecordid>oai_HAL_hal_01830297v5</sourcerecordid><originalsourceid>FETCH-LOGICAL-c402t-9a3247b62d953f1154383e1b589119f8b195209b1ae1e5ba8b402ae5ee43a4403</originalsourceid><addsrcrecordid>eNqFkE9PAjEQxRujiYh-h149LPbPLnS9AVExIfGi8eChme0OUNLdYluIfHt3g9Gjp8nMvPcy8yOEcjbijI_vtiPYJ99AsgZGgol-XEqRn5EBVxOZCSXH52TAGCuybqMuyVWM267NuRID8jGzzrYIgX7uoU37hsZjTNhE6ltqfLMDk-g6wG4T7-k7OpftfMS6xRgptDVdO1-Bo_jV64xvU_DOQdWFpuM1uViBi3jzU4fk7fHhdb7Ili9Pz_PpMjM5EykroTt3Uo1FXRZyxXmRSyWRV4UqOS9XquJlIVhZcUCORQWq6myABWIuIc-ZHJLbU-4GnN4F20A4ag9WL6ZL3c8YV5KJcnIoOq06aU3wMQZc_Ro40z1QvdV_QHUPVJ-AdtbZyYrdLweLQUdjsTVY24Am6drb_0O-AVLThDE</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Bilinear quantum systems on compact graphs: Well-posedness and global exact controllability</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Duca, Alessandro</creator><creatorcontrib>Duca, Alessandro</creatorcontrib><description>A major application of the mathematical concept of graph in quantum mechanics is to model networks of electrical wires or electromagnetic wave-guides. In this paper, we address the dynamics of a particle trapped on such a network in presence of an external electromagnetic field. We study the controllability of the motion when the intensity of the field changes over time and plays the role of control. From a mathematical point of view, the dynamics of the particle is modeled by the so-called bilinear Schrödinger equation defined on a graph representing the network. The main purpose of this work is to extend the existing theory for bilinear quantum systems on bounded intervals to the framework of graphs. To this end, we introduce a suitable mathematical setting where to address the controllability of the equation from a theoretical point of view. More precisely, we determine assumptions on the network and on the potential field ensuring its global exact controllability in suitable spaces. Finally, we discuss two applications of our results and their practical implications to two specific problems involving a star-shaped network and a tadpole graph.</description><identifier>ISSN: 0005-1098</identifier><identifier>EISSN: 1873-2836</identifier><identifier>DOI: 10.1016/j.automatica.2020.109324</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Analysis of PDEs ; Bilinear quantum systems ; Dynamical Systems ; Global exact controllability ; Mathematical Physics ; Mathematics ; Optimization and Control ; Quantum graphs ; Spectral Theory</subject><ispartof>Automatica (Oxford), 2021-01, Vol.123, p.109324, Article 109324</ispartof><rights>2020 Elsevier Ltd</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c402t-9a3247b62d953f1154383e1b589119f8b195209b1ae1e5ba8b402ae5ee43a4403</citedby><cites>FETCH-LOGICAL-c402t-9a3247b62d953f1154383e1b589119f8b195209b1ae1e5ba8b402ae5ee43a4403</cites><orcidid>0000-0001-7060-1723</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.automatica.2020.109324$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3548,27923,27924,45994</link.rule.ids><backlink>$$Uhttps://hal.science/hal-01830297$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Duca, Alessandro</creatorcontrib><title>Bilinear quantum systems on compact graphs: Well-posedness and global exact controllability</title><title>Automatica (Oxford)</title><description>A major application of the mathematical concept of graph in quantum mechanics is to model networks of electrical wires or electromagnetic wave-guides. In this paper, we address the dynamics of a particle trapped on such a network in presence of an external electromagnetic field. We study the controllability of the motion when the intensity of the field changes over time and plays the role of control. From a mathematical point of view, the dynamics of the particle is modeled by the so-called bilinear Schrödinger equation defined on a graph representing the network. The main purpose of this work is to extend the existing theory for bilinear quantum systems on bounded intervals to the framework of graphs. To this end, we introduce a suitable mathematical setting where to address the controllability of the equation from a theoretical point of view. More precisely, we determine assumptions on the network and on the potential field ensuring its global exact controllability in suitable spaces. Finally, we discuss two applications of our results and their practical implications to two specific problems involving a star-shaped network and a tadpole graph.</description><subject>Analysis of PDEs</subject><subject>Bilinear quantum systems</subject><subject>Dynamical Systems</subject><subject>Global exact controllability</subject><subject>Mathematical Physics</subject><subject>Mathematics</subject><subject>Optimization and Control</subject><subject>Quantum graphs</subject><subject>Spectral Theory</subject><issn>0005-1098</issn><issn>1873-2836</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFkE9PAjEQxRujiYh-h149LPbPLnS9AVExIfGi8eChme0OUNLdYluIfHt3g9Gjp8nMvPcy8yOEcjbijI_vtiPYJ99AsgZGgol-XEqRn5EBVxOZCSXH52TAGCuybqMuyVWM267NuRID8jGzzrYIgX7uoU37hsZjTNhE6ltqfLMDk-g6wG4T7-k7OpftfMS6xRgptDVdO1-Bo_jV64xvU_DOQdWFpuM1uViBi3jzU4fk7fHhdb7Ili9Pz_PpMjM5EykroTt3Uo1FXRZyxXmRSyWRV4UqOS9XquJlIVhZcUCORQWq6myABWIuIc-ZHJLbU-4GnN4F20A4ag9WL6ZL3c8YV5KJcnIoOq06aU3wMQZc_Ro40z1QvdV_QHUPVJ-AdtbZyYrdLweLQUdjsTVY24Am6drb_0O-AVLThDE</recordid><startdate>202101</startdate><enddate>202101</enddate><creator>Duca, Alessandro</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0001-7060-1723</orcidid></search><sort><creationdate>202101</creationdate><title>Bilinear quantum systems on compact graphs: Well-posedness and global exact controllability</title><author>Duca, Alessandro</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c402t-9a3247b62d953f1154383e1b589119f8b195209b1ae1e5ba8b402ae5ee43a4403</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Analysis of PDEs</topic><topic>Bilinear quantum systems</topic><topic>Dynamical Systems</topic><topic>Global exact controllability</topic><topic>Mathematical Physics</topic><topic>Mathematics</topic><topic>Optimization and Control</topic><topic>Quantum graphs</topic><topic>Spectral Theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Duca, Alessandro</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Automatica (Oxford)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Duca, Alessandro</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bilinear quantum systems on compact graphs: Well-posedness and global exact controllability</atitle><jtitle>Automatica (Oxford)</jtitle><date>2021-01</date><risdate>2021</risdate><volume>123</volume><spage>109324</spage><pages>109324-</pages><artnum>109324</artnum><issn>0005-1098</issn><eissn>1873-2836</eissn><abstract>A major application of the mathematical concept of graph in quantum mechanics is to model networks of electrical wires or electromagnetic wave-guides. In this paper, we address the dynamics of a particle trapped on such a network in presence of an external electromagnetic field. We study the controllability of the motion when the intensity of the field changes over time and plays the role of control. From a mathematical point of view, the dynamics of the particle is modeled by the so-called bilinear Schrödinger equation defined on a graph representing the network. The main purpose of this work is to extend the existing theory for bilinear quantum systems on bounded intervals to the framework of graphs. To this end, we introduce a suitable mathematical setting where to address the controllability of the equation from a theoretical point of view. More precisely, we determine assumptions on the network and on the potential field ensuring its global exact controllability in suitable spaces. Finally, we discuss two applications of our results and their practical implications to two specific problems involving a star-shaped network and a tadpole graph.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.automatica.2020.109324</doi><orcidid>https://orcid.org/0000-0001-7060-1723</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0005-1098
ispartof Automatica (Oxford), 2021-01, Vol.123, p.109324, Article 109324
issn 0005-1098
1873-2836
language eng
recordid cdi_hal_primary_oai_HAL_hal_01830297v5
source ScienceDirect Journals (5 years ago - present)
subjects Analysis of PDEs
Bilinear quantum systems
Dynamical Systems
Global exact controllability
Mathematical Physics
Mathematics
Optimization and Control
Quantum graphs
Spectral Theory
title Bilinear quantum systems on compact graphs: Well-posedness and global exact controllability
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T16%3A12%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bilinear%20quantum%20systems%20on%20compact%20graphs:%20Well-posedness%20and%20global%20exact%20controllability&rft.jtitle=Automatica%20(Oxford)&rft.au=Duca,%20Alessandro&rft.date=2021-01&rft.volume=123&rft.spage=109324&rft.pages=109324-&rft.artnum=109324&rft.issn=0005-1098&rft.eissn=1873-2836&rft_id=info:doi/10.1016/j.automatica.2020.109324&rft_dat=%3Chal_cross%3Eoai_HAL_hal_01830297v5%3C/hal_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0005109820305240&rfr_iscdi=true