Atomistic Kinetic Monte Carlo studies of microchemical evolutions driven by diffusion processes under irradiation

Atomistic Kinetic Monte Carlo (AKMC) simulations are a powerful tool to study the microstructural and microchemical evolution of alloys controlled by diffusion processes, under irradiation and during thermal ageing. In the framework of the FP6 Perfect program, two main approaches have been applied t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of nuclear materials 2010-11, Vol.406 (1), p.55-67
Hauptverfasser: Soisson, F., Becquart, C.S., Castin, N., Domain, C., Malerba, L., Vincent, E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 67
container_issue 1
container_start_page 55
container_title Journal of nuclear materials
container_volume 406
creator Soisson, F.
Becquart, C.S.
Castin, N.
Domain, C.
Malerba, L.
Vincent, E.
description Atomistic Kinetic Monte Carlo (AKMC) simulations are a powerful tool to study the microstructural and microchemical evolution of alloys controlled by diffusion processes, under irradiation and during thermal ageing. In the framework of the FP6 Perfect program, two main approaches have been applied to binary and multicomponent iron based alloys. The first one is based on a diffusion model which takes into account vacancy and self-interstitial jumps, using simple rigid lattice approximation and broken-bond models to compute the point-defect jump frequencies. The corresponding parameters are fitted on ab initio calculations of a few typical configurations and migration barriers. The second method uses empirical potentials to compute a much larger number of migration barriers, including atomic relaxations, and Artificial Intelligence regression methods to predict the other ones. It is somewhat less rapid than the first one, but significantly more than simulations using “on-the-fly” calculations of all the barriers. We review here the recent advances and perspectives concerning these techniques.
doi_str_mv 10.1016/j.jnucmat.2010.05.018
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01828143v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022311510002308</els_id><sourcerecordid>864396879</sourcerecordid><originalsourceid>FETCH-LOGICAL-c441t-6315c567e738a773e5f4233796f9d4603adb0f9f76d21e40be0ccd480778a8353</originalsourceid><addsrcrecordid>eNqFUcGKFDEUDKLguPoJQm7ioWdfOkknfZJhUHdxxIueQyZ5YTP0dHaT9MD-vWlm8eqpoKiq5FUR8pHBlgEbbk_b07y4s63bHhoHcgtMvyIbphXvhO7hNdkA9H3HGZNvybtSTgAgR5Ab8rSr6RxLjY7-iDOu-DPNFene5inRUhcfsdAU6Dm6nNwDNrQTxUualhrTXKjP8YIzPT5TH0NYSiPpY5NiKc25zB4zjTlbH-1qeE_eBDsV_PCCN-TPt6-_93fd4df3-_3u0DkhWO0GzqSTg0LFtVWKowyi51yNQxi9GIBbf4QwBjX4nqGAI4JzXmhQSlvNJb8hn6-5D3YyjzmebX42yUZztzuYlWsl9ZoJfmFN--mqbf9-WrBU0zpxOE12xrQUowfBx0GrsSnlVdnKKCVj-BfNwKxrmJN5WcOsaxiQ60PN9-Xqw3byJWI2xUWcHfqY0VXjU_xPwl-NEZcg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>864396879</pqid></control><display><type>article</type><title>Atomistic Kinetic Monte Carlo studies of microchemical evolutions driven by diffusion processes under irradiation</title><source>Elsevier ScienceDirect Journals</source><creator>Soisson, F. ; Becquart, C.S. ; Castin, N. ; Domain, C. ; Malerba, L. ; Vincent, E.</creator><creatorcontrib>Soisson, F. ; Becquart, C.S. ; Castin, N. ; Domain, C. ; Malerba, L. ; Vincent, E.</creatorcontrib><description>Atomistic Kinetic Monte Carlo (AKMC) simulations are a powerful tool to study the microstructural and microchemical evolution of alloys controlled by diffusion processes, under irradiation and during thermal ageing. In the framework of the FP6 Perfect program, two main approaches have been applied to binary and multicomponent iron based alloys. The first one is based on a diffusion model which takes into account vacancy and self-interstitial jumps, using simple rigid lattice approximation and broken-bond models to compute the point-defect jump frequencies. The corresponding parameters are fitted on ab initio calculations of a few typical configurations and migration barriers. The second method uses empirical potentials to compute a much larger number of migration barriers, including atomic relaxations, and Artificial Intelligence regression methods to predict the other ones. It is somewhat less rapid than the first one, but significantly more than simulations using “on-the-fly” calculations of all the barriers. We review here the recent advances and perspectives concerning these techniques.</description><identifier>ISSN: 0022-3115</identifier><identifier>EISSN: 1873-4820</identifier><identifier>DOI: 10.1016/j.jnucmat.2010.05.018</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Engineering Sciences ; Materials</subject><ispartof>Journal of nuclear materials, 2010-11, Vol.406 (1), p.55-67</ispartof><rights>2010 Elsevier B.V.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c441t-6315c567e738a773e5f4233796f9d4603adb0f9f76d21e40be0ccd480778a8353</citedby><cites>FETCH-LOGICAL-c441t-6315c567e738a773e5f4233796f9d4603adb0f9f76d21e40be0ccd480778a8353</cites><orcidid>0000-0002-9802-9818</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0022311510002308$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3536,27903,27904,65309</link.rule.ids><backlink>$$Uhttps://edf.hal.science/hal-01828143$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Soisson, F.</creatorcontrib><creatorcontrib>Becquart, C.S.</creatorcontrib><creatorcontrib>Castin, N.</creatorcontrib><creatorcontrib>Domain, C.</creatorcontrib><creatorcontrib>Malerba, L.</creatorcontrib><creatorcontrib>Vincent, E.</creatorcontrib><title>Atomistic Kinetic Monte Carlo studies of microchemical evolutions driven by diffusion processes under irradiation</title><title>Journal of nuclear materials</title><description>Atomistic Kinetic Monte Carlo (AKMC) simulations are a powerful tool to study the microstructural and microchemical evolution of alloys controlled by diffusion processes, under irradiation and during thermal ageing. In the framework of the FP6 Perfect program, two main approaches have been applied to binary and multicomponent iron based alloys. The first one is based on a diffusion model which takes into account vacancy and self-interstitial jumps, using simple rigid lattice approximation and broken-bond models to compute the point-defect jump frequencies. The corresponding parameters are fitted on ab initio calculations of a few typical configurations and migration barriers. The second method uses empirical potentials to compute a much larger number of migration barriers, including atomic relaxations, and Artificial Intelligence regression methods to predict the other ones. It is somewhat less rapid than the first one, but significantly more than simulations using “on-the-fly” calculations of all the barriers. We review here the recent advances and perspectives concerning these techniques.</description><subject>Engineering Sciences</subject><subject>Materials</subject><issn>0022-3115</issn><issn>1873-4820</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNqFUcGKFDEUDKLguPoJQm7ioWdfOkknfZJhUHdxxIueQyZ5YTP0dHaT9MD-vWlm8eqpoKiq5FUR8pHBlgEbbk_b07y4s63bHhoHcgtMvyIbphXvhO7hNdkA9H3HGZNvybtSTgAgR5Ab8rSr6RxLjY7-iDOu-DPNFene5inRUhcfsdAU6Dm6nNwDNrQTxUualhrTXKjP8YIzPT5TH0NYSiPpY5NiKc25zB4zjTlbH-1qeE_eBDsV_PCCN-TPt6-_93fd4df3-_3u0DkhWO0GzqSTg0LFtVWKowyi51yNQxi9GIBbf4QwBjX4nqGAI4JzXmhQSlvNJb8hn6-5D3YyjzmebX42yUZztzuYlWsl9ZoJfmFN--mqbf9-WrBU0zpxOE12xrQUowfBx0GrsSnlVdnKKCVj-BfNwKxrmJN5WcOsaxiQ60PN9-Xqw3byJWI2xUWcHfqY0VXjU_xPwl-NEZcg</recordid><startdate>20101101</startdate><enddate>20101101</enddate><creator>Soisson, F.</creator><creator>Becquart, C.S.</creator><creator>Castin, N.</creator><creator>Domain, C.</creator><creator>Malerba, L.</creator><creator>Vincent, E.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>C1K</scope><scope>SOI</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-9802-9818</orcidid></search><sort><creationdate>20101101</creationdate><title>Atomistic Kinetic Monte Carlo studies of microchemical evolutions driven by diffusion processes under irradiation</title><author>Soisson, F. ; Becquart, C.S. ; Castin, N. ; Domain, C. ; Malerba, L. ; Vincent, E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c441t-6315c567e738a773e5f4233796f9d4603adb0f9f76d21e40be0ccd480778a8353</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Engineering Sciences</topic><topic>Materials</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Soisson, F.</creatorcontrib><creatorcontrib>Becquart, C.S.</creatorcontrib><creatorcontrib>Castin, N.</creatorcontrib><creatorcontrib>Domain, C.</creatorcontrib><creatorcontrib>Malerba, L.</creatorcontrib><creatorcontrib>Vincent, E.</creatorcontrib><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Environment Abstracts</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Journal of nuclear materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Soisson, F.</au><au>Becquart, C.S.</au><au>Castin, N.</au><au>Domain, C.</au><au>Malerba, L.</au><au>Vincent, E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Atomistic Kinetic Monte Carlo studies of microchemical evolutions driven by diffusion processes under irradiation</atitle><jtitle>Journal of nuclear materials</jtitle><date>2010-11-01</date><risdate>2010</risdate><volume>406</volume><issue>1</issue><spage>55</spage><epage>67</epage><pages>55-67</pages><issn>0022-3115</issn><eissn>1873-4820</eissn><abstract>Atomistic Kinetic Monte Carlo (AKMC) simulations are a powerful tool to study the microstructural and microchemical evolution of alloys controlled by diffusion processes, under irradiation and during thermal ageing. In the framework of the FP6 Perfect program, two main approaches have been applied to binary and multicomponent iron based alloys. The first one is based on a diffusion model which takes into account vacancy and self-interstitial jumps, using simple rigid lattice approximation and broken-bond models to compute the point-defect jump frequencies. The corresponding parameters are fitted on ab initio calculations of a few typical configurations and migration barriers. The second method uses empirical potentials to compute a much larger number of migration barriers, including atomic relaxations, and Artificial Intelligence regression methods to predict the other ones. It is somewhat less rapid than the first one, but significantly more than simulations using “on-the-fly” calculations of all the barriers. We review here the recent advances and perspectives concerning these techniques.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.jnucmat.2010.05.018</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-9802-9818</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0022-3115
ispartof Journal of nuclear materials, 2010-11, Vol.406 (1), p.55-67
issn 0022-3115
1873-4820
language eng
recordid cdi_hal_primary_oai_HAL_hal_01828143v1
source Elsevier ScienceDirect Journals
subjects Engineering Sciences
Materials
title Atomistic Kinetic Monte Carlo studies of microchemical evolutions driven by diffusion processes under irradiation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T20%3A05%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Atomistic%20Kinetic%20Monte%20Carlo%20studies%20of%20microchemical%20evolutions%20driven%20by%20diffusion%20processes%20under%20irradiation&rft.jtitle=Journal%20of%20nuclear%20materials&rft.au=Soisson,%20F.&rft.date=2010-11-01&rft.volume=406&rft.issue=1&rft.spage=55&rft.epage=67&rft.pages=55-67&rft.issn=0022-3115&rft.eissn=1873-4820&rft_id=info:doi/10.1016/j.jnucmat.2010.05.018&rft_dat=%3Cproquest_hal_p%3E864396879%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=864396879&rft_id=info:pmid/&rft_els_id=S0022311510002308&rfr_iscdi=true