Atomistic Kinetic Monte Carlo studies of microchemical evolutions driven by diffusion processes under irradiation
Atomistic Kinetic Monte Carlo (AKMC) simulations are a powerful tool to study the microstructural and microchemical evolution of alloys controlled by diffusion processes, under irradiation and during thermal ageing. In the framework of the FP6 Perfect program, two main approaches have been applied t...
Gespeichert in:
Veröffentlicht in: | Journal of nuclear materials 2010-11, Vol.406 (1), p.55-67 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 67 |
---|---|
container_issue | 1 |
container_start_page | 55 |
container_title | Journal of nuclear materials |
container_volume | 406 |
creator | Soisson, F. Becquart, C.S. Castin, N. Domain, C. Malerba, L. Vincent, E. |
description | Atomistic Kinetic Monte Carlo (AKMC) simulations are a powerful tool to study the microstructural and microchemical evolution of alloys controlled by diffusion processes, under irradiation and during thermal ageing. In the framework of the FP6 Perfect program, two main approaches have been applied to binary and multicomponent iron based alloys. The first one is based on a diffusion model which takes into account vacancy and self-interstitial jumps, using simple rigid lattice approximation and broken-bond models to compute the point-defect jump frequencies. The corresponding parameters are fitted on
ab initio calculations of a few typical configurations and migration barriers. The second method uses empirical potentials to compute a much larger number of migration barriers, including atomic relaxations, and Artificial Intelligence regression methods to predict the other ones. It is somewhat less rapid than the first one, but significantly more than simulations using “on-the-fly” calculations of all the barriers. We review here the recent advances and perspectives concerning these techniques. |
doi_str_mv | 10.1016/j.jnucmat.2010.05.018 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01828143v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022311510002308</els_id><sourcerecordid>864396879</sourcerecordid><originalsourceid>FETCH-LOGICAL-c441t-6315c567e738a773e5f4233796f9d4603adb0f9f76d21e40be0ccd480778a8353</originalsourceid><addsrcrecordid>eNqFUcGKFDEUDKLguPoJQm7ioWdfOkknfZJhUHdxxIueQyZ5YTP0dHaT9MD-vWlm8eqpoKiq5FUR8pHBlgEbbk_b07y4s63bHhoHcgtMvyIbphXvhO7hNdkA9H3HGZNvybtSTgAgR5Ab8rSr6RxLjY7-iDOu-DPNFene5inRUhcfsdAU6Dm6nNwDNrQTxUualhrTXKjP8YIzPT5TH0NYSiPpY5NiKc25zB4zjTlbH-1qeE_eBDsV_PCCN-TPt6-_93fd4df3-_3u0DkhWO0GzqSTg0LFtVWKowyi51yNQxi9GIBbf4QwBjX4nqGAI4JzXmhQSlvNJb8hn6-5D3YyjzmebX42yUZztzuYlWsl9ZoJfmFN--mqbf9-WrBU0zpxOE12xrQUowfBx0GrsSnlVdnKKCVj-BfNwKxrmJN5WcOsaxiQ60PN9-Xqw3byJWI2xUWcHfqY0VXjU_xPwl-NEZcg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>864396879</pqid></control><display><type>article</type><title>Atomistic Kinetic Monte Carlo studies of microchemical evolutions driven by diffusion processes under irradiation</title><source>Elsevier ScienceDirect Journals</source><creator>Soisson, F. ; Becquart, C.S. ; Castin, N. ; Domain, C. ; Malerba, L. ; Vincent, E.</creator><creatorcontrib>Soisson, F. ; Becquart, C.S. ; Castin, N. ; Domain, C. ; Malerba, L. ; Vincent, E.</creatorcontrib><description>Atomistic Kinetic Monte Carlo (AKMC) simulations are a powerful tool to study the microstructural and microchemical evolution of alloys controlled by diffusion processes, under irradiation and during thermal ageing. In the framework of the FP6 Perfect program, two main approaches have been applied to binary and multicomponent iron based alloys. The first one is based on a diffusion model which takes into account vacancy and self-interstitial jumps, using simple rigid lattice approximation and broken-bond models to compute the point-defect jump frequencies. The corresponding parameters are fitted on
ab initio calculations of a few typical configurations and migration barriers. The second method uses empirical potentials to compute a much larger number of migration barriers, including atomic relaxations, and Artificial Intelligence regression methods to predict the other ones. It is somewhat less rapid than the first one, but significantly more than simulations using “on-the-fly” calculations of all the barriers. We review here the recent advances and perspectives concerning these techniques.</description><identifier>ISSN: 0022-3115</identifier><identifier>EISSN: 1873-4820</identifier><identifier>DOI: 10.1016/j.jnucmat.2010.05.018</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Engineering Sciences ; Materials</subject><ispartof>Journal of nuclear materials, 2010-11, Vol.406 (1), p.55-67</ispartof><rights>2010 Elsevier B.V.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c441t-6315c567e738a773e5f4233796f9d4603adb0f9f76d21e40be0ccd480778a8353</citedby><cites>FETCH-LOGICAL-c441t-6315c567e738a773e5f4233796f9d4603adb0f9f76d21e40be0ccd480778a8353</cites><orcidid>0000-0002-9802-9818</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0022311510002308$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3536,27903,27904,65309</link.rule.ids><backlink>$$Uhttps://edf.hal.science/hal-01828143$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Soisson, F.</creatorcontrib><creatorcontrib>Becquart, C.S.</creatorcontrib><creatorcontrib>Castin, N.</creatorcontrib><creatorcontrib>Domain, C.</creatorcontrib><creatorcontrib>Malerba, L.</creatorcontrib><creatorcontrib>Vincent, E.</creatorcontrib><title>Atomistic Kinetic Monte Carlo studies of microchemical evolutions driven by diffusion processes under irradiation</title><title>Journal of nuclear materials</title><description>Atomistic Kinetic Monte Carlo (AKMC) simulations are a powerful tool to study the microstructural and microchemical evolution of alloys controlled by diffusion processes, under irradiation and during thermal ageing. In the framework of the FP6 Perfect program, two main approaches have been applied to binary and multicomponent iron based alloys. The first one is based on a diffusion model which takes into account vacancy and self-interstitial jumps, using simple rigid lattice approximation and broken-bond models to compute the point-defect jump frequencies. The corresponding parameters are fitted on
ab initio calculations of a few typical configurations and migration barriers. The second method uses empirical potentials to compute a much larger number of migration barriers, including atomic relaxations, and Artificial Intelligence regression methods to predict the other ones. It is somewhat less rapid than the first one, but significantly more than simulations using “on-the-fly” calculations of all the barriers. We review here the recent advances and perspectives concerning these techniques.</description><subject>Engineering Sciences</subject><subject>Materials</subject><issn>0022-3115</issn><issn>1873-4820</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNqFUcGKFDEUDKLguPoJQm7ioWdfOkknfZJhUHdxxIueQyZ5YTP0dHaT9MD-vWlm8eqpoKiq5FUR8pHBlgEbbk_b07y4s63bHhoHcgtMvyIbphXvhO7hNdkA9H3HGZNvybtSTgAgR5Ab8rSr6RxLjY7-iDOu-DPNFene5inRUhcfsdAU6Dm6nNwDNrQTxUualhrTXKjP8YIzPT5TH0NYSiPpY5NiKc25zB4zjTlbH-1qeE_eBDsV_PCCN-TPt6-_93fd4df3-_3u0DkhWO0GzqSTg0LFtVWKowyi51yNQxi9GIBbf4QwBjX4nqGAI4JzXmhQSlvNJb8hn6-5D3YyjzmebX42yUZztzuYlWsl9ZoJfmFN--mqbf9-WrBU0zpxOE12xrQUowfBx0GrsSnlVdnKKCVj-BfNwKxrmJN5WcOsaxiQ60PN9-Xqw3byJWI2xUWcHfqY0VXjU_xPwl-NEZcg</recordid><startdate>20101101</startdate><enddate>20101101</enddate><creator>Soisson, F.</creator><creator>Becquart, C.S.</creator><creator>Castin, N.</creator><creator>Domain, C.</creator><creator>Malerba, L.</creator><creator>Vincent, E.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>C1K</scope><scope>SOI</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-9802-9818</orcidid></search><sort><creationdate>20101101</creationdate><title>Atomistic Kinetic Monte Carlo studies of microchemical evolutions driven by diffusion processes under irradiation</title><author>Soisson, F. ; Becquart, C.S. ; Castin, N. ; Domain, C. ; Malerba, L. ; Vincent, E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c441t-6315c567e738a773e5f4233796f9d4603adb0f9f76d21e40be0ccd480778a8353</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Engineering Sciences</topic><topic>Materials</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Soisson, F.</creatorcontrib><creatorcontrib>Becquart, C.S.</creatorcontrib><creatorcontrib>Castin, N.</creatorcontrib><creatorcontrib>Domain, C.</creatorcontrib><creatorcontrib>Malerba, L.</creatorcontrib><creatorcontrib>Vincent, E.</creatorcontrib><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Environment Abstracts</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Journal of nuclear materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Soisson, F.</au><au>Becquart, C.S.</au><au>Castin, N.</au><au>Domain, C.</au><au>Malerba, L.</au><au>Vincent, E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Atomistic Kinetic Monte Carlo studies of microchemical evolutions driven by diffusion processes under irradiation</atitle><jtitle>Journal of nuclear materials</jtitle><date>2010-11-01</date><risdate>2010</risdate><volume>406</volume><issue>1</issue><spage>55</spage><epage>67</epage><pages>55-67</pages><issn>0022-3115</issn><eissn>1873-4820</eissn><abstract>Atomistic Kinetic Monte Carlo (AKMC) simulations are a powerful tool to study the microstructural and microchemical evolution of alloys controlled by diffusion processes, under irradiation and during thermal ageing. In the framework of the FP6 Perfect program, two main approaches have been applied to binary and multicomponent iron based alloys. The first one is based on a diffusion model which takes into account vacancy and self-interstitial jumps, using simple rigid lattice approximation and broken-bond models to compute the point-defect jump frequencies. The corresponding parameters are fitted on
ab initio calculations of a few typical configurations and migration barriers. The second method uses empirical potentials to compute a much larger number of migration barriers, including atomic relaxations, and Artificial Intelligence regression methods to predict the other ones. It is somewhat less rapid than the first one, but significantly more than simulations using “on-the-fly” calculations of all the barriers. We review here the recent advances and perspectives concerning these techniques.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.jnucmat.2010.05.018</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-9802-9818</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-3115 |
ispartof | Journal of nuclear materials, 2010-11, Vol.406 (1), p.55-67 |
issn | 0022-3115 1873-4820 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_01828143v1 |
source | Elsevier ScienceDirect Journals |
subjects | Engineering Sciences Materials |
title | Atomistic Kinetic Monte Carlo studies of microchemical evolutions driven by diffusion processes under irradiation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T20%3A05%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Atomistic%20Kinetic%20Monte%20Carlo%20studies%20of%20microchemical%20evolutions%20driven%20by%20diffusion%20processes%20under%20irradiation&rft.jtitle=Journal%20of%20nuclear%20materials&rft.au=Soisson,%20F.&rft.date=2010-11-01&rft.volume=406&rft.issue=1&rft.spage=55&rft.epage=67&rft.pages=55-67&rft.issn=0022-3115&rft.eissn=1873-4820&rft_id=info:doi/10.1016/j.jnucmat.2010.05.018&rft_dat=%3Cproquest_hal_p%3E864396879%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=864396879&rft_id=info:pmid/&rft_els_id=S0022311510002308&rfr_iscdi=true |