Fractional powers on noncommutative L p for p < 1
We prove that the homogeneous functional calculus associated to x → |x| θ or x → sgn (x)|x| θ for 0 < θ < 1 is θ-Hölder on selfadjoint elements of noncommutative Lp-spaces for 0 < p ∞ with values in L p/θ. This extends an inequality of Birman, Koplienko and Solomjak also obtained by Ando....
Gespeichert in:
Veröffentlicht in: | Advances in mathematics (New York. 1965) 2018-07, Vol.333, p.194-211 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 211 |
---|---|
container_issue | |
container_start_page | 194 |
container_title | Advances in mathematics (New York. 1965) |
container_volume | 333 |
creator | Ricard, Éric |
description | We prove that the homogeneous functional calculus associated to x → |x| θ or x → sgn (x)|x| θ for 0 < θ < 1 is θ-Hölder on selfadjoint elements of noncommutative Lp-spaces for 0 < p ∞ with values in L p/θ. This extends an inequality of Birman, Koplienko and Solomjak also obtained by Ando. |
doi_str_mv | 10.1016/j.aim.2018.05.024 |
format | Article |
fullrecord | <record><control><sourceid>hal</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01817762v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_HAL_hal_01817762v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-h119t-5fe928a8da2795ffde167510e74a022a2d1f012aeade7bc6bc7e76ffb169680f3</originalsourceid><addsrcrecordid>eNotj71KxEAUhQdRMK4-gN20Fon3TpL5AZtlcXeFgI3W4SaZYWdJMiGJK3a-ke_kkxjR5hy-U3xwGLtFSBBQ3h8T8l0iAHUCeQIiO2MRgoFYgBbnLAIAjLUCfcmupum4oMnQRCzdjlTPPvTU8iG823Hioed96OvQdW8zzf5kecEH7sK45MP35xdeswtH7WRv_nvFXrePL5t9XDzvnjbrIj4gmjnOnTVCk25IKJM711iUKkewKiMQgkSDDlCQpcaqqpZVraySzlUojdTg0hW7-_MeqC2H0Xc0fpSBfLlfF-XvtrxFpaQ4YfoDSF1J4g</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Fractional powers on noncommutative L p for p < 1</title><source>Elsevier ScienceDirect Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Ricard, Éric</creator><creatorcontrib>Ricard, Éric</creatorcontrib><description>We prove that the homogeneous functional calculus associated to x → |x| θ or x → sgn (x)|x| θ for 0 < θ < 1 is θ-Hölder on selfadjoint elements of noncommutative Lp-spaces for 0 < p ∞ with values in L p/θ. This extends an inequality of Birman, Koplienko and Solomjak also obtained by Ando.</description><identifier>ISSN: 0001-8708</identifier><identifier>EISSN: 1090-2082</identifier><identifier>DOI: 10.1016/j.aim.2018.05.024</identifier><language>eng</language><publisher>Elsevier</publisher><subject>Functional Analysis ; Mathematics</subject><ispartof>Advances in mathematics (New York. 1965), 2018-07, Vol.333, p.194-211</ispartof><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://normandie-univ.hal.science/hal-01817762$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Ricard, Éric</creatorcontrib><title>Fractional powers on noncommutative L p for p < 1</title><title>Advances in mathematics (New York. 1965)</title><description>We prove that the homogeneous functional calculus associated to x → |x| θ or x → sgn (x)|x| θ for 0 < θ < 1 is θ-Hölder on selfadjoint elements of noncommutative Lp-spaces for 0 < p ∞ with values in L p/θ. This extends an inequality of Birman, Koplienko and Solomjak also obtained by Ando.</description><subject>Functional Analysis</subject><subject>Mathematics</subject><issn>0001-8708</issn><issn>1090-2082</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNotj71KxEAUhQdRMK4-gN20Fon3TpL5AZtlcXeFgI3W4SaZYWdJMiGJK3a-ke_kkxjR5hy-U3xwGLtFSBBQ3h8T8l0iAHUCeQIiO2MRgoFYgBbnLAIAjLUCfcmupum4oMnQRCzdjlTPPvTU8iG823Hioed96OvQdW8zzf5kecEH7sK45MP35xdeswtH7WRv_nvFXrePL5t9XDzvnjbrIj4gmjnOnTVCk25IKJM711iUKkewKiMQgkSDDlCQpcaqqpZVraySzlUojdTg0hW7-_MeqC2H0Xc0fpSBfLlfF-XvtrxFpaQ4YfoDSF1J4g</recordid><startdate>20180731</startdate><enddate>20180731</enddate><creator>Ricard, Éric</creator><general>Elsevier</general><scope>1XC</scope><scope>VOOES</scope></search><sort><creationdate>20180731</creationdate><title>Fractional powers on noncommutative L p for p < 1</title><author>Ricard, Éric</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-h119t-5fe928a8da2795ffde167510e74a022a2d1f012aeade7bc6bc7e76ffb169680f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Functional Analysis</topic><topic>Mathematics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ricard, Éric</creatorcontrib><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Advances in mathematics (New York. 1965)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ricard, Éric</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fractional powers on noncommutative L p for p < 1</atitle><jtitle>Advances in mathematics (New York. 1965)</jtitle><date>2018-07-31</date><risdate>2018</risdate><volume>333</volume><spage>194</spage><epage>211</epage><pages>194-211</pages><issn>0001-8708</issn><eissn>1090-2082</eissn><abstract>We prove that the homogeneous functional calculus associated to x → |x| θ or x → sgn (x)|x| θ for 0 < θ < 1 is θ-Hölder on selfadjoint elements of noncommutative Lp-spaces for 0 < p ∞ with values in L p/θ. This extends an inequality of Birman, Koplienko and Solomjak also obtained by Ando.</abstract><pub>Elsevier</pub><doi>10.1016/j.aim.2018.05.024</doi><tpages>18</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0001-8708 |
ispartof | Advances in mathematics (New York. 1965), 2018-07, Vol.333, p.194-211 |
issn | 0001-8708 1090-2082 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_01817762v1 |
source | Elsevier ScienceDirect Journals; EZB-FREE-00999 freely available EZB journals |
subjects | Functional Analysis Mathematics |
title | Fractional powers on noncommutative L p for p < 1 |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T13%3A14%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fractional%20powers%20on%20noncommutative%20L%20p%20for%20p%20%3C%E2%80%AF1&rft.jtitle=Advances%20in%20mathematics%20(New%20York.%201965)&rft.au=Ricard,%20%C3%89ric&rft.date=2018-07-31&rft.volume=333&rft.spage=194&rft.epage=211&rft.pages=194-211&rft.issn=0001-8708&rft.eissn=1090-2082&rft_id=info:doi/10.1016/j.aim.2018.05.024&rft_dat=%3Chal%3Eoai_HAL_hal_01817762v1%3C/hal%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |