Fast time-domain modeling of fluid-coupled cMUT cells: from the single cell to the 1-D linear array element

We report a fast time-domain model of fluid-coupled cMUTs developed to predict the transient response-i.e., the impulse pressure response-of an element of a linear 1-D array. Mechanical equations of the cMUT diaphragm are solved with 2-D finite-difference schemes. The time-domain solving method is a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on ultrasonics, ferroelectrics, and frequency control ferroelectrics, and frequency control, 2013-07, Vol.60 (7), p.1505-1518
Hauptverfasser: Senegond, N., Boulme, A., Plag, C., Teston, F., Certon, D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1518
container_issue 7
container_start_page 1505
container_title IEEE transactions on ultrasonics, ferroelectrics, and frequency control
container_volume 60
creator Senegond, N.
Boulme, A.
Plag, C.
Teston, F.
Certon, D.
description We report a fast time-domain model of fluid-coupled cMUTs developed to predict the transient response-i.e., the impulse pressure response-of an element of a linear 1-D array. Mechanical equations of the cMUT diaphragm are solved with 2-D finite-difference schemes. The time-domain solving method is a fourth-order Runge-Kutta algorithm. The model takes into account the electrostatic nonlinearity and the contact with the bottom electrode when the membrane is collapsed. Mutual acoustic coupling between cells is introduced through the numerical implementation of analytical solutions of the impulse diffraction theory established in the case of acoustic sources with rectangular geometry. Processing times are very short: they vary from a few minutes for a single cell to a maximum of 30 min for one element of an array. After a description of the model, the impact of the nonlinearity and the pull-in/pull-out phenomena on the dynamic behavior of the cMUT diaphragm is discussed. Experimental results of mechanical displacements obtained by interferometric measurements and the acoustic pressure field are compared with simulations. Different excitation signals-high-frequency bandwidth pulses and toneburst excitations of varying central frequency-were chosen to compare theory with experimental results.
doi_str_mv 10.1109/TUFFC.2013.2723
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01814882v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6552401</ieee_id><sourcerecordid>3033860071</sourcerecordid><originalsourceid>FETCH-LOGICAL-c412t-178bf40b616b2ef44e34b40e968c201d042ca84565b62e8d7d71d8180ed0027e3</originalsourceid><addsrcrecordid>eNqFkUGP0zAQhS0EYkvhzAEJWeICh3RnHDtxuK0KZZGKuLRny4knbJakLnaCtP8ep1164MLJ0vM3T_PmMfYaYYUI1fVuv9msVwIwX4lS5E_YApVQma6UesoWoLXKckC4Yi9ivAdAKSvxnF0JBSAV6gX7ubFx5GM3UOb8YLsDH7yjvjv84L7lbT91Lmv8dOzJ8ebbfscb6vv4kbfBD3y8Ix4T2tNJ5qM_SZh94smBbOA2BPvAqaeBDuNL9qy1faRXj--S7Tefd-vbbPv9y9f1zTZrJIoxw1LXrYS6wKIW1EpJuawlUFXoJiV1IEVjtVSFqgtB2pWuRKdRAzkAUVK-ZB_Ovne2N8fQDTY8GG87c3uzNbMGqFFqLX5jYt-f2WPwvyaKoxm6OIexB_JTNKikzEW6lfw_KkWlZTUPLNm7f9B7P4VDCp0oLFDrEiBR12eqCT7GQO1lWQQz12tO9Zq5XjPXmybePvpO9UDuwv_tMwFvzkBHRJfvQikhk8kfU6qlAw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1416188700</pqid></control><display><type>article</type><title>Fast time-domain modeling of fluid-coupled cMUT cells: from the single cell to the 1-D linear array element</title><source>IEEE Electronic Library (IEL)</source><creator>Senegond, N. ; Boulme, A. ; Plag, C. ; Teston, F. ; Certon, D.</creator><creatorcontrib>Senegond, N. ; Boulme, A. ; Plag, C. ; Teston, F. ; Certon, D.</creatorcontrib><description>We report a fast time-domain model of fluid-coupled cMUTs developed to predict the transient response-i.e., the impulse pressure response-of an element of a linear 1-D array. Mechanical equations of the cMUT diaphragm are solved with 2-D finite-difference schemes. The time-domain solving method is a fourth-order Runge-Kutta algorithm. The model takes into account the electrostatic nonlinearity and the contact with the bottom electrode when the membrane is collapsed. Mutual acoustic coupling between cells is introduced through the numerical implementation of analytical solutions of the impulse diffraction theory established in the case of acoustic sources with rectangular geometry. Processing times are very short: they vary from a few minutes for a single cell to a maximum of 30 min for one element of an array. After a description of the model, the impact of the nonlinearity and the pull-in/pull-out phenomena on the dynamic behavior of the cMUT diaphragm is discussed. Experimental results of mechanical displacements obtained by interferometric measurements and the acoustic pressure field are compared with simulations. Different excitation signals-high-frequency bandwidth pulses and toneburst excitations of varying central frequency-were chosen to compare theory with experimental results.</description><identifier>ISSN: 0885-3010</identifier><identifier>EISSN: 1525-8955</identifier><identifier>DOI: 10.1109/TUFFC.2013.2723</identifier><identifier>PMID: 25004518</identifier><identifier>CODEN: ITUCER</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Acoustics ; Arrays ; Diaphragms ; Electric power ; Engineering Sciences ; Excitation ; Impulses ; Mathematical analysis ; Mathematical models ; Mechanics ; Micro and nanotechnologies ; Microelectronics ; Nonlinearity ; Physics ; Runge-Kutta method ; Studies</subject><ispartof>IEEE transactions on ultrasonics, ferroelectrics, and frequency control, 2013-07, Vol.60 (7), p.1505-1518</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Jul 2013</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c412t-178bf40b616b2ef44e34b40e968c201d042ca84565b62e8d7d71d8180ed0027e3</citedby><cites>FETCH-LOGICAL-c412t-178bf40b616b2ef44e34b40e968c201d042ca84565b62e8d7d71d8180ed0027e3</cites><orcidid>0000-0001-5963-7119</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6552401$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,780,784,796,885,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6552401$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25004518$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-01814882$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Senegond, N.</creatorcontrib><creatorcontrib>Boulme, A.</creatorcontrib><creatorcontrib>Plag, C.</creatorcontrib><creatorcontrib>Teston, F.</creatorcontrib><creatorcontrib>Certon, D.</creatorcontrib><title>Fast time-domain modeling of fluid-coupled cMUT cells: from the single cell to the 1-D linear array element</title><title>IEEE transactions on ultrasonics, ferroelectrics, and frequency control</title><addtitle>T-UFFC</addtitle><addtitle>IEEE Trans Ultrason Ferroelectr Freq Control</addtitle><description>We report a fast time-domain model of fluid-coupled cMUTs developed to predict the transient response-i.e., the impulse pressure response-of an element of a linear 1-D array. Mechanical equations of the cMUT diaphragm are solved with 2-D finite-difference schemes. The time-domain solving method is a fourth-order Runge-Kutta algorithm. The model takes into account the electrostatic nonlinearity and the contact with the bottom electrode when the membrane is collapsed. Mutual acoustic coupling between cells is introduced through the numerical implementation of analytical solutions of the impulse diffraction theory established in the case of acoustic sources with rectangular geometry. Processing times are very short: they vary from a few minutes for a single cell to a maximum of 30 min for one element of an array. After a description of the model, the impact of the nonlinearity and the pull-in/pull-out phenomena on the dynamic behavior of the cMUT diaphragm is discussed. Experimental results of mechanical displacements obtained by interferometric measurements and the acoustic pressure field are compared with simulations. Different excitation signals-high-frequency bandwidth pulses and toneburst excitations of varying central frequency-were chosen to compare theory with experimental results.</description><subject>Acoustics</subject><subject>Arrays</subject><subject>Diaphragms</subject><subject>Electric power</subject><subject>Engineering Sciences</subject><subject>Excitation</subject><subject>Impulses</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Mechanics</subject><subject>Micro and nanotechnologies</subject><subject>Microelectronics</subject><subject>Nonlinearity</subject><subject>Physics</subject><subject>Runge-Kutta method</subject><subject>Studies</subject><issn>0885-3010</issn><issn>1525-8955</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNqFkUGP0zAQhS0EYkvhzAEJWeICh3RnHDtxuK0KZZGKuLRny4knbJakLnaCtP8ep1164MLJ0vM3T_PmMfYaYYUI1fVuv9msVwIwX4lS5E_YApVQma6UesoWoLXKckC4Yi9ivAdAKSvxnF0JBSAV6gX7ubFx5GM3UOb8YLsDH7yjvjv84L7lbT91Lmv8dOzJ8ebbfscb6vv4kbfBD3y8Ix4T2tNJ5qM_SZh94smBbOA2BPvAqaeBDuNL9qy1faRXj--S7Tefd-vbbPv9y9f1zTZrJIoxw1LXrYS6wKIW1EpJuawlUFXoJiV1IEVjtVSFqgtB2pWuRKdRAzkAUVK-ZB_Ovne2N8fQDTY8GG87c3uzNbMGqFFqLX5jYt-f2WPwvyaKoxm6OIexB_JTNKikzEW6lfw_KkWlZTUPLNm7f9B7P4VDCp0oLFDrEiBR12eqCT7GQO1lWQQz12tO9Zq5XjPXmybePvpO9UDuwv_tMwFvzkBHRJfvQikhk8kfU6qlAw</recordid><startdate>20130701</startdate><enddate>20130701</enddate><creator>Senegond, N.</creator><creator>Boulme, A.</creator><creator>Plag, C.</creator><creator>Teston, F.</creator><creator>Certon, D.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><general>Institute of Electrical and Electronics Engineers</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>L7M</scope><scope>7X8</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0001-5963-7119</orcidid></search><sort><creationdate>20130701</creationdate><title>Fast time-domain modeling of fluid-coupled cMUT cells: from the single cell to the 1-D linear array element</title><author>Senegond, N. ; Boulme, A. ; Plag, C. ; Teston, F. ; Certon, D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c412t-178bf40b616b2ef44e34b40e968c201d042ca84565b62e8d7d71d8180ed0027e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Acoustics</topic><topic>Arrays</topic><topic>Diaphragms</topic><topic>Electric power</topic><topic>Engineering Sciences</topic><topic>Excitation</topic><topic>Impulses</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Mechanics</topic><topic>Micro and nanotechnologies</topic><topic>Microelectronics</topic><topic>Nonlinearity</topic><topic>Physics</topic><topic>Runge-Kutta method</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Senegond, N.</creatorcontrib><creatorcontrib>Boulme, A.</creatorcontrib><creatorcontrib>Plag, C.</creatorcontrib><creatorcontrib>Teston, F.</creatorcontrib><creatorcontrib>Certon, D.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>IEEE transactions on ultrasonics, ferroelectrics, and frequency control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Senegond, N.</au><au>Boulme, A.</au><au>Plag, C.</au><au>Teston, F.</au><au>Certon, D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fast time-domain modeling of fluid-coupled cMUT cells: from the single cell to the 1-D linear array element</atitle><jtitle>IEEE transactions on ultrasonics, ferroelectrics, and frequency control</jtitle><stitle>T-UFFC</stitle><addtitle>IEEE Trans Ultrason Ferroelectr Freq Control</addtitle><date>2013-07-01</date><risdate>2013</risdate><volume>60</volume><issue>7</issue><spage>1505</spage><epage>1518</epage><pages>1505-1518</pages><issn>0885-3010</issn><eissn>1525-8955</eissn><coden>ITUCER</coden><abstract>We report a fast time-domain model of fluid-coupled cMUTs developed to predict the transient response-i.e., the impulse pressure response-of an element of a linear 1-D array. Mechanical equations of the cMUT diaphragm are solved with 2-D finite-difference schemes. The time-domain solving method is a fourth-order Runge-Kutta algorithm. The model takes into account the electrostatic nonlinearity and the contact with the bottom electrode when the membrane is collapsed. Mutual acoustic coupling between cells is introduced through the numerical implementation of analytical solutions of the impulse diffraction theory established in the case of acoustic sources with rectangular geometry. Processing times are very short: they vary from a few minutes for a single cell to a maximum of 30 min for one element of an array. After a description of the model, the impact of the nonlinearity and the pull-in/pull-out phenomena on the dynamic behavior of the cMUT diaphragm is discussed. Experimental results of mechanical displacements obtained by interferometric measurements and the acoustic pressure field are compared with simulations. Different excitation signals-high-frequency bandwidth pulses and toneburst excitations of varying central frequency-were chosen to compare theory with experimental results.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>25004518</pmid><doi>10.1109/TUFFC.2013.2723</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-5963-7119</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0885-3010
ispartof IEEE transactions on ultrasonics, ferroelectrics, and frequency control, 2013-07, Vol.60 (7), p.1505-1518
issn 0885-3010
1525-8955
language eng
recordid cdi_hal_primary_oai_HAL_hal_01814882v1
source IEEE Electronic Library (IEL)
subjects Acoustics
Arrays
Diaphragms
Electric power
Engineering Sciences
Excitation
Impulses
Mathematical analysis
Mathematical models
Mechanics
Micro and nanotechnologies
Microelectronics
Nonlinearity
Physics
Runge-Kutta method
Studies
title Fast time-domain modeling of fluid-coupled cMUT cells: from the single cell to the 1-D linear array element
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T06%3A34%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fast%20time-domain%20modeling%20of%20fluid-coupled%20cMUT%20cells:%20from%20the%20single%20cell%20to%20the%201-D%20linear%20array%20element&rft.jtitle=IEEE%20transactions%20on%20ultrasonics,%20ferroelectrics,%20and%20frequency%20control&rft.au=Senegond,%20N.&rft.date=2013-07-01&rft.volume=60&rft.issue=7&rft.spage=1505&rft.epage=1518&rft.pages=1505-1518&rft.issn=0885-3010&rft.eissn=1525-8955&rft.coden=ITUCER&rft_id=info:doi/10.1109/TUFFC.2013.2723&rft_dat=%3Cproquest_RIE%3E3033860071%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1416188700&rft_id=info:pmid/25004518&rft_ieee_id=6552401&rfr_iscdi=true