Comparative multi-omics analysis reveals diverse latex-based defense strategies against pests among latex-producing organs of the fig tree (Ficus carica)

Latexes from plants contain high amounts of toxic proteins and metabolites, which attack microbes and herbivores after exudation at pest-induced wound sites. The protein and metabolite constituents of latexes are highly variable, depending on the plant species and organ. To determine the diversity o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Planta 2018-06, Vol.247 (6), p.1423-1438
Hauptverfasser: Kitajima, Sakihito, Aoki, Wataru, Shibata, Daisuke, Nakajima, Daisuke, Sakurai, Nozomu, Yazaki, Kazufumi, Munakata, Ryosuke, Taira, Toki, Kobayashi, Masaru, Aburaya, Shunsuke, Savadogo, Eric Hyrmeya, Hibino, Susumu, Yano, Haruna
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1438
container_issue 6
container_start_page 1423
container_title Planta
container_volume 247
creator Kitajima, Sakihito
Aoki, Wataru
Shibata, Daisuke
Nakajima, Daisuke
Sakurai, Nozomu
Yazaki, Kazufumi
Munakata, Ryosuke
Taira, Toki
Kobayashi, Masaru
Aburaya, Shunsuke
Savadogo, Eric Hyrmeya
Hibino, Susumu
Yano, Haruna
description Latexes from plants contain high amounts of toxic proteins and metabolites, which attack microbes and herbivores after exudation at pest-induced wound sites. The protein and metabolite constituents of latexes are highly variable, depending on the plant species and organ. To determine the diversity of latex-based defense strategies in fig tree (Ficus carica) organs, we conducted comparative proteomic, transcriptomic and metabolomic analyses on latexes isolated from immature fruit, young petioles and lignified trunks of F. carica after constructing a unigene sequence library using RNA-seq data. Trypsin inhibitors were the most abundant proteins in petiole latex, while cysteine proteases (“ficins”) were the most abundant in immature fruit and trunk latexes. Galloylglycerol, a possible defense-related metabolite, appeared to be highly accumulated in all three latexes. The expression levels of pathogenesis-related proteins were highest in the latex of trunk, suggesting that this latex had adapted a defensive role against microbe attacks. Although young petioles and immature fruit are both unlignified soft organs, and potential food for herbivorous insects, unigenes for the sesquiterpenoid pathway, which likely produces defense-associated volatiles, and the phenylpropanoid pathway, which produces toxic furanocoumarins, were expressed less in immature fruit latex. This difference may indicate that while petioles and fruit protect the plant from attack by herbivores, the fruit must also attract insect pollinators at younger stages and animals after ripening. We also suggest possible candidate transcription factors and signal transduction proteins that are involved in the differential expression of the unigenes.
doi_str_mv 10.1007/s00425-018-2880-3
format Article
fullrecord <record><control><sourceid>jstor_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01814122v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>48726941</jstor_id><sourcerecordid>48726941</sourcerecordid><originalsourceid>FETCH-LOGICAL-c494t-d001481730d726680bb88b59bff7d113a24513a9d7eb80560ec735c551a286b83</originalsourceid><addsrcrecordid>eNp9UcFu1DAQtRCILoUP4ACyxIUeUsZ2nDjHakVppZW4lLPlJJPUqyRebGfVfgp_W0dZlhsXj2fmvTeaeYR8ZHDNAMpvASDnMgOmMq4UZOIV2bBc8IxDrl6TDUD6QyXkBXkXwh4gNcvyLbnglRQFZ9WG_Nm68WC8ifaIdJyHaDM32iZQM5nhOdhAPR7RDIG2CeED0sFEfMpqE7ClLXY4pVqISQF7i4nXGzuFSA8YYspGN_UnysG7dm5syp3vzRSo62h8RNrZnkaPSL_e2mYOtDHeNubqPXnTpbn44RQvya_b7w_bu2z388f99maXNXmVx6xdtlKsFNCWvCgU1LVStazqritbxoThuUxv1ZZYK5AFYFMK2UjJDFdFrcQluVp1H82gD96Oxj9rZ6y-u9nppZbOy3LG-ZEl7JcVm3b5PacN9d7NPl0qaA5MykIKtaDYimq8C8Fjd5ZloBfj9GrcoqwX47RInM8n5bkesT0z_jqVAHwFhNSaevT_Rv9P9dNK2ofo_Fk0V-lUVc7EC5gkrYI</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2015565381</pqid></control><display><type>article</type><title>Comparative multi-omics analysis reveals diverse latex-based defense strategies against pests among latex-producing organs of the fig tree (Ficus carica)</title><source>Jstor Complete Legacy</source><source>MEDLINE</source><source>SpringerLink Journals - AutoHoldings</source><creator>Kitajima, Sakihito ; Aoki, Wataru ; Shibata, Daisuke ; Nakajima, Daisuke ; Sakurai, Nozomu ; Yazaki, Kazufumi ; Munakata, Ryosuke ; Taira, Toki ; Kobayashi, Masaru ; Aburaya, Shunsuke ; Savadogo, Eric Hyrmeya ; Hibino, Susumu ; Yano, Haruna</creator><creatorcontrib>Kitajima, Sakihito ; Aoki, Wataru ; Shibata, Daisuke ; Nakajima, Daisuke ; Sakurai, Nozomu ; Yazaki, Kazufumi ; Munakata, Ryosuke ; Taira, Toki ; Kobayashi, Masaru ; Aburaya, Shunsuke ; Savadogo, Eric Hyrmeya ; Hibino, Susumu ; Yano, Haruna</creatorcontrib><description>Latexes from plants contain high amounts of toxic proteins and metabolites, which attack microbes and herbivores after exudation at pest-induced wound sites. The protein and metabolite constituents of latexes are highly variable, depending on the plant species and organ. To determine the diversity of latex-based defense strategies in fig tree (Ficus carica) organs, we conducted comparative proteomic, transcriptomic and metabolomic analyses on latexes isolated from immature fruit, young petioles and lignified trunks of F. carica after constructing a unigene sequence library using RNA-seq data. Trypsin inhibitors were the most abundant proteins in petiole latex, while cysteine proteases (“ficins”) were the most abundant in immature fruit and trunk latexes. Galloylglycerol, a possible defense-related metabolite, appeared to be highly accumulated in all three latexes. The expression levels of pathogenesis-related proteins were highest in the latex of trunk, suggesting that this latex had adapted a defensive role against microbe attacks. Although young petioles and immature fruit are both unlignified soft organs, and potential food for herbivorous insects, unigenes for the sesquiterpenoid pathway, which likely produces defense-associated volatiles, and the phenylpropanoid pathway, which produces toxic furanocoumarins, were expressed less in immature fruit latex. This difference may indicate that while petioles and fruit protect the plant from attack by herbivores, the fruit must also attract insect pollinators at younger stages and animals after ripening. We also suggest possible candidate transcription factors and signal transduction proteins that are involved in the differential expression of the unigenes.</description><identifier>ISSN: 0032-0935</identifier><identifier>EISSN: 1432-2048</identifier><identifier>DOI: 10.1007/s00425-018-2880-3</identifier><identifier>PMID: 29536219</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Science + Business Media</publisher><subject>Agriculture ; Allelochemicals ; Animals ; Biodiversity ; Biomedical and Life Sciences ; Ecology ; Exudation ; Ficus - genetics ; Ficus - immunology ; Ficus - metabolism ; Ficus carica ; Forestry ; Fruit - chemistry ; Fruit - genetics ; Fruit - immunology ; Fruit - metabolism ; Fruit trees ; Fruits ; Furanocoumarins ; Gene Expression Profiling ; Herbivores ; Herbivory ; Insecta - physiology ; Insects ; Latex ; Latex - metabolism ; Life Sciences ; Metabolites ; Metabolomics ; Nucleotide sequence ; Organ Specificity ; Organs ; ORIGINAL ARTICLE ; Pathogenesis ; Pathogenesis-related proteins ; Pests ; Phytopathology and phytopharmacy ; Plant protection ; Plant Sciences ; Plant species ; Plant Stems - chemistry ; Plant Stems - genetics ; Plant Stems - immunology ; Plant Stems - metabolism ; Pollinators ; Proteins ; Proteomics ; Ribonucleic acid ; Ripening ; RNA ; Signal transduction ; Transcription factors ; Trees ; Trypsin ; Trypsin inhibitors ; Vegetal Biology ; Volatiles ; Wounds</subject><ispartof>Planta, 2018-06, Vol.247 (6), p.1423-1438</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2018</rights><rights>Planta is a copyright of Springer, (2018). All Rights Reserved.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c494t-d001481730d726680bb88b59bff7d113a24513a9d7eb80560ec735c551a286b83</citedby><cites>FETCH-LOGICAL-c494t-d001481730d726680bb88b59bff7d113a24513a9d7eb80560ec735c551a286b83</cites><orcidid>0000-0002-9840-6708</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/48726941$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/48726941$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,776,780,799,881,27901,27902,41464,42533,51294,57992,58225</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29536219$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-01814122$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Kitajima, Sakihito</creatorcontrib><creatorcontrib>Aoki, Wataru</creatorcontrib><creatorcontrib>Shibata, Daisuke</creatorcontrib><creatorcontrib>Nakajima, Daisuke</creatorcontrib><creatorcontrib>Sakurai, Nozomu</creatorcontrib><creatorcontrib>Yazaki, Kazufumi</creatorcontrib><creatorcontrib>Munakata, Ryosuke</creatorcontrib><creatorcontrib>Taira, Toki</creatorcontrib><creatorcontrib>Kobayashi, Masaru</creatorcontrib><creatorcontrib>Aburaya, Shunsuke</creatorcontrib><creatorcontrib>Savadogo, Eric Hyrmeya</creatorcontrib><creatorcontrib>Hibino, Susumu</creatorcontrib><creatorcontrib>Yano, Haruna</creatorcontrib><title>Comparative multi-omics analysis reveals diverse latex-based defense strategies against pests among latex-producing organs of the fig tree (Ficus carica)</title><title>Planta</title><addtitle>Planta</addtitle><addtitle>Planta</addtitle><description>Latexes from plants contain high amounts of toxic proteins and metabolites, which attack microbes and herbivores after exudation at pest-induced wound sites. The protein and metabolite constituents of latexes are highly variable, depending on the plant species and organ. To determine the diversity of latex-based defense strategies in fig tree (Ficus carica) organs, we conducted comparative proteomic, transcriptomic and metabolomic analyses on latexes isolated from immature fruit, young petioles and lignified trunks of F. carica after constructing a unigene sequence library using RNA-seq data. Trypsin inhibitors were the most abundant proteins in petiole latex, while cysteine proteases (“ficins”) were the most abundant in immature fruit and trunk latexes. Galloylglycerol, a possible defense-related metabolite, appeared to be highly accumulated in all three latexes. The expression levels of pathogenesis-related proteins were highest in the latex of trunk, suggesting that this latex had adapted a defensive role against microbe attacks. Although young petioles and immature fruit are both unlignified soft organs, and potential food for herbivorous insects, unigenes for the sesquiterpenoid pathway, which likely produces defense-associated volatiles, and the phenylpropanoid pathway, which produces toxic furanocoumarins, were expressed less in immature fruit latex. This difference may indicate that while petioles and fruit protect the plant from attack by herbivores, the fruit must also attract insect pollinators at younger stages and animals after ripening. We also suggest possible candidate transcription factors and signal transduction proteins that are involved in the differential expression of the unigenes.</description><subject>Agriculture</subject><subject>Allelochemicals</subject><subject>Animals</subject><subject>Biodiversity</subject><subject>Biomedical and Life Sciences</subject><subject>Ecology</subject><subject>Exudation</subject><subject>Ficus - genetics</subject><subject>Ficus - immunology</subject><subject>Ficus - metabolism</subject><subject>Ficus carica</subject><subject>Forestry</subject><subject>Fruit - chemistry</subject><subject>Fruit - genetics</subject><subject>Fruit - immunology</subject><subject>Fruit - metabolism</subject><subject>Fruit trees</subject><subject>Fruits</subject><subject>Furanocoumarins</subject><subject>Gene Expression Profiling</subject><subject>Herbivores</subject><subject>Herbivory</subject><subject>Insecta - physiology</subject><subject>Insects</subject><subject>Latex</subject><subject>Latex - metabolism</subject><subject>Life Sciences</subject><subject>Metabolites</subject><subject>Metabolomics</subject><subject>Nucleotide sequence</subject><subject>Organ Specificity</subject><subject>Organs</subject><subject>ORIGINAL ARTICLE</subject><subject>Pathogenesis</subject><subject>Pathogenesis-related proteins</subject><subject>Pests</subject><subject>Phytopathology and phytopharmacy</subject><subject>Plant protection</subject><subject>Plant Sciences</subject><subject>Plant species</subject><subject>Plant Stems - chemistry</subject><subject>Plant Stems - genetics</subject><subject>Plant Stems - immunology</subject><subject>Plant Stems - metabolism</subject><subject>Pollinators</subject><subject>Proteins</subject><subject>Proteomics</subject><subject>Ribonucleic acid</subject><subject>Ripening</subject><subject>RNA</subject><subject>Signal transduction</subject><subject>Transcription factors</subject><subject>Trees</subject><subject>Trypsin</subject><subject>Trypsin inhibitors</subject><subject>Vegetal Biology</subject><subject>Volatiles</subject><subject>Wounds</subject><issn>0032-0935</issn><issn>1432-2048</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNp9UcFu1DAQtRCILoUP4ACyxIUeUsZ2nDjHakVppZW4lLPlJJPUqyRebGfVfgp_W0dZlhsXj2fmvTeaeYR8ZHDNAMpvASDnMgOmMq4UZOIV2bBc8IxDrl6TDUD6QyXkBXkXwh4gNcvyLbnglRQFZ9WG_Nm68WC8ifaIdJyHaDM32iZQM5nhOdhAPR7RDIG2CeED0sFEfMpqE7ClLXY4pVqISQF7i4nXGzuFSA8YYspGN_UnysG7dm5syp3vzRSo62h8RNrZnkaPSL_e2mYOtDHeNubqPXnTpbn44RQvya_b7w_bu2z388f99maXNXmVx6xdtlKsFNCWvCgU1LVStazqritbxoThuUxv1ZZYK5AFYFMK2UjJDFdFrcQluVp1H82gD96Oxj9rZ6y-u9nppZbOy3LG-ZEl7JcVm3b5PacN9d7NPl0qaA5MykIKtaDYimq8C8Fjd5ZloBfj9GrcoqwX47RInM8n5bkesT0z_jqVAHwFhNSaevT_Rv9P9dNK2ofo_Fk0V-lUVc7EC5gkrYI</recordid><startdate>20180601</startdate><enddate>20180601</enddate><creator>Kitajima, Sakihito</creator><creator>Aoki, Wataru</creator><creator>Shibata, Daisuke</creator><creator>Nakajima, Daisuke</creator><creator>Sakurai, Nozomu</creator><creator>Yazaki, Kazufumi</creator><creator>Munakata, Ryosuke</creator><creator>Taira, Toki</creator><creator>Kobayashi, Masaru</creator><creator>Aburaya, Shunsuke</creator><creator>Savadogo, Eric Hyrmeya</creator><creator>Hibino, Susumu</creator><creator>Yano, Haruna</creator><general>Springer Science + Business Media</general><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><general>Springer Verlag</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QP</scope><scope>7QR</scope><scope>7TM</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>RC3</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-9840-6708</orcidid></search><sort><creationdate>20180601</creationdate><title>Comparative multi-omics analysis reveals diverse latex-based defense strategies against pests among latex-producing organs of the fig tree (Ficus carica)</title><author>Kitajima, Sakihito ; Aoki, Wataru ; Shibata, Daisuke ; Nakajima, Daisuke ; Sakurai, Nozomu ; Yazaki, Kazufumi ; Munakata, Ryosuke ; Taira, Toki ; Kobayashi, Masaru ; Aburaya, Shunsuke ; Savadogo, Eric Hyrmeya ; Hibino, Susumu ; Yano, Haruna</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c494t-d001481730d726680bb88b59bff7d113a24513a9d7eb80560ec735c551a286b83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Agriculture</topic><topic>Allelochemicals</topic><topic>Animals</topic><topic>Biodiversity</topic><topic>Biomedical and Life Sciences</topic><topic>Ecology</topic><topic>Exudation</topic><topic>Ficus - genetics</topic><topic>Ficus - immunology</topic><topic>Ficus - metabolism</topic><topic>Ficus carica</topic><topic>Forestry</topic><topic>Fruit - chemistry</topic><topic>Fruit - genetics</topic><topic>Fruit - immunology</topic><topic>Fruit - metabolism</topic><topic>Fruit trees</topic><topic>Fruits</topic><topic>Furanocoumarins</topic><topic>Gene Expression Profiling</topic><topic>Herbivores</topic><topic>Herbivory</topic><topic>Insecta - physiology</topic><topic>Insects</topic><topic>Latex</topic><topic>Latex - metabolism</topic><topic>Life Sciences</topic><topic>Metabolites</topic><topic>Metabolomics</topic><topic>Nucleotide sequence</topic><topic>Organ Specificity</topic><topic>Organs</topic><topic>ORIGINAL ARTICLE</topic><topic>Pathogenesis</topic><topic>Pathogenesis-related proteins</topic><topic>Pests</topic><topic>Phytopathology and phytopharmacy</topic><topic>Plant protection</topic><topic>Plant Sciences</topic><topic>Plant species</topic><topic>Plant Stems - chemistry</topic><topic>Plant Stems - genetics</topic><topic>Plant Stems - immunology</topic><topic>Plant Stems - metabolism</topic><topic>Pollinators</topic><topic>Proteins</topic><topic>Proteomics</topic><topic>Ribonucleic acid</topic><topic>Ripening</topic><topic>RNA</topic><topic>Signal transduction</topic><topic>Transcription factors</topic><topic>Trees</topic><topic>Trypsin</topic><topic>Trypsin inhibitors</topic><topic>Vegetal Biology</topic><topic>Volatiles</topic><topic>Wounds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kitajima, Sakihito</creatorcontrib><creatorcontrib>Aoki, Wataru</creatorcontrib><creatorcontrib>Shibata, Daisuke</creatorcontrib><creatorcontrib>Nakajima, Daisuke</creatorcontrib><creatorcontrib>Sakurai, Nozomu</creatorcontrib><creatorcontrib>Yazaki, Kazufumi</creatorcontrib><creatorcontrib>Munakata, Ryosuke</creatorcontrib><creatorcontrib>Taira, Toki</creatorcontrib><creatorcontrib>Kobayashi, Masaru</creatorcontrib><creatorcontrib>Aburaya, Shunsuke</creatorcontrib><creatorcontrib>Savadogo, Eric Hyrmeya</creatorcontrib><creatorcontrib>Hibino, Susumu</creatorcontrib><creatorcontrib>Yano, Haruna</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Genetics Abstracts</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Planta</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kitajima, Sakihito</au><au>Aoki, Wataru</au><au>Shibata, Daisuke</au><au>Nakajima, Daisuke</au><au>Sakurai, Nozomu</au><au>Yazaki, Kazufumi</au><au>Munakata, Ryosuke</au><au>Taira, Toki</au><au>Kobayashi, Masaru</au><au>Aburaya, Shunsuke</au><au>Savadogo, Eric Hyrmeya</au><au>Hibino, Susumu</au><au>Yano, Haruna</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Comparative multi-omics analysis reveals diverse latex-based defense strategies against pests among latex-producing organs of the fig tree (Ficus carica)</atitle><jtitle>Planta</jtitle><stitle>Planta</stitle><addtitle>Planta</addtitle><date>2018-06-01</date><risdate>2018</risdate><volume>247</volume><issue>6</issue><spage>1423</spage><epage>1438</epage><pages>1423-1438</pages><issn>0032-0935</issn><eissn>1432-2048</eissn><abstract>Latexes from plants contain high amounts of toxic proteins and metabolites, which attack microbes and herbivores after exudation at pest-induced wound sites. The protein and metabolite constituents of latexes are highly variable, depending on the plant species and organ. To determine the diversity of latex-based defense strategies in fig tree (Ficus carica) organs, we conducted comparative proteomic, transcriptomic and metabolomic analyses on latexes isolated from immature fruit, young petioles and lignified trunks of F. carica after constructing a unigene sequence library using RNA-seq data. Trypsin inhibitors were the most abundant proteins in petiole latex, while cysteine proteases (“ficins”) were the most abundant in immature fruit and trunk latexes. Galloylglycerol, a possible defense-related metabolite, appeared to be highly accumulated in all three latexes. The expression levels of pathogenesis-related proteins were highest in the latex of trunk, suggesting that this latex had adapted a defensive role against microbe attacks. Although young petioles and immature fruit are both unlignified soft organs, and potential food for herbivorous insects, unigenes for the sesquiterpenoid pathway, which likely produces defense-associated volatiles, and the phenylpropanoid pathway, which produces toxic furanocoumarins, were expressed less in immature fruit latex. This difference may indicate that while petioles and fruit protect the plant from attack by herbivores, the fruit must also attract insect pollinators at younger stages and animals after ripening. We also suggest possible candidate transcription factors and signal transduction proteins that are involved in the differential expression of the unigenes.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Science + Business Media</pub><pmid>29536219</pmid><doi>10.1007/s00425-018-2880-3</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-9840-6708</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0032-0935
ispartof Planta, 2018-06, Vol.247 (6), p.1423-1438
issn 0032-0935
1432-2048
language eng
recordid cdi_hal_primary_oai_HAL_hal_01814122v1
source Jstor Complete Legacy; MEDLINE; SpringerLink Journals - AutoHoldings
subjects Agriculture
Allelochemicals
Animals
Biodiversity
Biomedical and Life Sciences
Ecology
Exudation
Ficus - genetics
Ficus - immunology
Ficus - metabolism
Ficus carica
Forestry
Fruit - chemistry
Fruit - genetics
Fruit - immunology
Fruit - metabolism
Fruit trees
Fruits
Furanocoumarins
Gene Expression Profiling
Herbivores
Herbivory
Insecta - physiology
Insects
Latex
Latex - metabolism
Life Sciences
Metabolites
Metabolomics
Nucleotide sequence
Organ Specificity
Organs
ORIGINAL ARTICLE
Pathogenesis
Pathogenesis-related proteins
Pests
Phytopathology and phytopharmacy
Plant protection
Plant Sciences
Plant species
Plant Stems - chemistry
Plant Stems - genetics
Plant Stems - immunology
Plant Stems - metabolism
Pollinators
Proteins
Proteomics
Ribonucleic acid
Ripening
RNA
Signal transduction
Transcription factors
Trees
Trypsin
Trypsin inhibitors
Vegetal Biology
Volatiles
Wounds
title Comparative multi-omics analysis reveals diverse latex-based defense strategies against pests among latex-producing organs of the fig tree (Ficus carica)
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T10%3A13%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Comparative%20multi-omics%20analysis%20reveals%20diverse%20latex-based%20defense%20strategies%20against%20pests%20among%20latex-producing%20organs%20of%20the%20fig%20tree%20(Ficus%20carica)&rft.jtitle=Planta&rft.au=Kitajima,%20Sakihito&rft.date=2018-06-01&rft.volume=247&rft.issue=6&rft.spage=1423&rft.epage=1438&rft.pages=1423-1438&rft.issn=0032-0935&rft.eissn=1432-2048&rft_id=info:doi/10.1007/s00425-018-2880-3&rft_dat=%3Cjstor_hal_p%3E48726941%3C/jstor_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2015565381&rft_id=info:pmid/29536219&rft_jstor_id=48726941&rfr_iscdi=true