Comparative multi-omics analysis reveals diverse latex-based defense strategies against pests among latex-producing organs of the fig tree (Ficus carica)
Latexes from plants contain high amounts of toxic proteins and metabolites, which attack microbes and herbivores after exudation at pest-induced wound sites. The protein and metabolite constituents of latexes are highly variable, depending on the plant species and organ. To determine the diversity o...
Gespeichert in:
Veröffentlicht in: | Planta 2018-06, Vol.247 (6), p.1423-1438 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1438 |
---|---|
container_issue | 6 |
container_start_page | 1423 |
container_title | Planta |
container_volume | 247 |
creator | Kitajima, Sakihito Aoki, Wataru Shibata, Daisuke Nakajima, Daisuke Sakurai, Nozomu Yazaki, Kazufumi Munakata, Ryosuke Taira, Toki Kobayashi, Masaru Aburaya, Shunsuke Savadogo, Eric Hyrmeya Hibino, Susumu Yano, Haruna |
description | Latexes from plants contain high amounts of toxic proteins and metabolites, which attack microbes and herbivores after exudation at pest-induced wound sites. The protein and metabolite constituents of latexes are highly variable, depending on the plant species and organ. To determine the diversity of latex-based defense strategies in fig tree (Ficus carica) organs, we conducted comparative proteomic, transcriptomic and metabolomic analyses on latexes isolated from immature fruit, young petioles and lignified trunks of F. carica after constructing a unigene sequence library using RNA-seq data. Trypsin inhibitors were the most abundant proteins in petiole latex, while cysteine proteases (“ficins”) were the most abundant in immature fruit and trunk latexes. Galloylglycerol, a possible defense-related metabolite, appeared to be highly accumulated in all three latexes. The expression levels of pathogenesis-related proteins were highest in the latex of trunk, suggesting that this latex had adapted a defensive role against microbe attacks. Although young petioles and immature fruit are both unlignified soft organs, and potential food for herbivorous insects, unigenes for the sesquiterpenoid pathway, which likely produces defense-associated volatiles, and the phenylpropanoid pathway, which produces toxic furanocoumarins, were expressed less in immature fruit latex. This difference may indicate that while petioles and fruit protect the plant from attack by herbivores, the fruit must also attract insect pollinators at younger stages and animals after ripening. We also suggest possible candidate transcription factors and signal transduction proteins that are involved in the differential expression of the unigenes. |
doi_str_mv | 10.1007/s00425-018-2880-3 |
format | Article |
fullrecord | <record><control><sourceid>jstor_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01814122v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>48726941</jstor_id><sourcerecordid>48726941</sourcerecordid><originalsourceid>FETCH-LOGICAL-c494t-d001481730d726680bb88b59bff7d113a24513a9d7eb80560ec735c551a286b83</originalsourceid><addsrcrecordid>eNp9UcFu1DAQtRCILoUP4ACyxIUeUsZ2nDjHakVppZW4lLPlJJPUqyRebGfVfgp_W0dZlhsXj2fmvTeaeYR8ZHDNAMpvASDnMgOmMq4UZOIV2bBc8IxDrl6TDUD6QyXkBXkXwh4gNcvyLbnglRQFZ9WG_Nm68WC8ifaIdJyHaDM32iZQM5nhOdhAPR7RDIG2CeED0sFEfMpqE7ClLXY4pVqISQF7i4nXGzuFSA8YYspGN_UnysG7dm5syp3vzRSo62h8RNrZnkaPSL_e2mYOtDHeNubqPXnTpbn44RQvya_b7w_bu2z388f99maXNXmVx6xdtlKsFNCWvCgU1LVStazqritbxoThuUxv1ZZYK5AFYFMK2UjJDFdFrcQluVp1H82gD96Oxj9rZ6y-u9nppZbOy3LG-ZEl7JcVm3b5PacN9d7NPl0qaA5MykIKtaDYimq8C8Fjd5ZloBfj9GrcoqwX47RInM8n5bkesT0z_jqVAHwFhNSaevT_Rv9P9dNK2ofo_Fk0V-lUVc7EC5gkrYI</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2015565381</pqid></control><display><type>article</type><title>Comparative multi-omics analysis reveals diverse latex-based defense strategies against pests among latex-producing organs of the fig tree (Ficus carica)</title><source>Jstor Complete Legacy</source><source>MEDLINE</source><source>SpringerLink Journals - AutoHoldings</source><creator>Kitajima, Sakihito ; Aoki, Wataru ; Shibata, Daisuke ; Nakajima, Daisuke ; Sakurai, Nozomu ; Yazaki, Kazufumi ; Munakata, Ryosuke ; Taira, Toki ; Kobayashi, Masaru ; Aburaya, Shunsuke ; Savadogo, Eric Hyrmeya ; Hibino, Susumu ; Yano, Haruna</creator><creatorcontrib>Kitajima, Sakihito ; Aoki, Wataru ; Shibata, Daisuke ; Nakajima, Daisuke ; Sakurai, Nozomu ; Yazaki, Kazufumi ; Munakata, Ryosuke ; Taira, Toki ; Kobayashi, Masaru ; Aburaya, Shunsuke ; Savadogo, Eric Hyrmeya ; Hibino, Susumu ; Yano, Haruna</creatorcontrib><description>Latexes from plants contain high amounts of toxic proteins and metabolites, which attack microbes and herbivores after exudation at pest-induced wound sites. The protein and metabolite constituents of latexes are highly variable, depending on the plant species and organ. To determine the diversity of latex-based defense strategies in fig tree (Ficus carica) organs, we conducted comparative proteomic, transcriptomic and metabolomic analyses on latexes isolated from immature fruit, young petioles and lignified trunks of F. carica after constructing a unigene sequence library using RNA-seq data. Trypsin inhibitors were the most abundant proteins in petiole latex, while cysteine proteases (“ficins”) were the most abundant in immature fruit and trunk latexes. Galloylglycerol, a possible defense-related metabolite, appeared to be highly accumulated in all three latexes. The expression levels of pathogenesis-related proteins were highest in the latex of trunk, suggesting that this latex had adapted a defensive role against microbe attacks. Although young petioles and immature fruit are both unlignified soft organs, and potential food for herbivorous insects, unigenes for the sesquiterpenoid pathway, which likely produces defense-associated volatiles, and the phenylpropanoid pathway, which produces toxic furanocoumarins, were expressed less in immature fruit latex. This difference may indicate that while petioles and fruit protect the plant from attack by herbivores, the fruit must also attract insect pollinators at younger stages and animals after ripening. We also suggest possible candidate transcription factors and signal transduction proteins that are involved in the differential expression of the unigenes.</description><identifier>ISSN: 0032-0935</identifier><identifier>EISSN: 1432-2048</identifier><identifier>DOI: 10.1007/s00425-018-2880-3</identifier><identifier>PMID: 29536219</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Science + Business Media</publisher><subject>Agriculture ; Allelochemicals ; Animals ; Biodiversity ; Biomedical and Life Sciences ; Ecology ; Exudation ; Ficus - genetics ; Ficus - immunology ; Ficus - metabolism ; Ficus carica ; Forestry ; Fruit - chemistry ; Fruit - genetics ; Fruit - immunology ; Fruit - metabolism ; Fruit trees ; Fruits ; Furanocoumarins ; Gene Expression Profiling ; Herbivores ; Herbivory ; Insecta - physiology ; Insects ; Latex ; Latex - metabolism ; Life Sciences ; Metabolites ; Metabolomics ; Nucleotide sequence ; Organ Specificity ; Organs ; ORIGINAL ARTICLE ; Pathogenesis ; Pathogenesis-related proteins ; Pests ; Phytopathology and phytopharmacy ; Plant protection ; Plant Sciences ; Plant species ; Plant Stems - chemistry ; Plant Stems - genetics ; Plant Stems - immunology ; Plant Stems - metabolism ; Pollinators ; Proteins ; Proteomics ; Ribonucleic acid ; Ripening ; RNA ; Signal transduction ; Transcription factors ; Trees ; Trypsin ; Trypsin inhibitors ; Vegetal Biology ; Volatiles ; Wounds</subject><ispartof>Planta, 2018-06, Vol.247 (6), p.1423-1438</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2018</rights><rights>Planta is a copyright of Springer, (2018). All Rights Reserved.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c494t-d001481730d726680bb88b59bff7d113a24513a9d7eb80560ec735c551a286b83</citedby><cites>FETCH-LOGICAL-c494t-d001481730d726680bb88b59bff7d113a24513a9d7eb80560ec735c551a286b83</cites><orcidid>0000-0002-9840-6708</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/48726941$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/48726941$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,776,780,799,881,27901,27902,41464,42533,51294,57992,58225</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29536219$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-01814122$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Kitajima, Sakihito</creatorcontrib><creatorcontrib>Aoki, Wataru</creatorcontrib><creatorcontrib>Shibata, Daisuke</creatorcontrib><creatorcontrib>Nakajima, Daisuke</creatorcontrib><creatorcontrib>Sakurai, Nozomu</creatorcontrib><creatorcontrib>Yazaki, Kazufumi</creatorcontrib><creatorcontrib>Munakata, Ryosuke</creatorcontrib><creatorcontrib>Taira, Toki</creatorcontrib><creatorcontrib>Kobayashi, Masaru</creatorcontrib><creatorcontrib>Aburaya, Shunsuke</creatorcontrib><creatorcontrib>Savadogo, Eric Hyrmeya</creatorcontrib><creatorcontrib>Hibino, Susumu</creatorcontrib><creatorcontrib>Yano, Haruna</creatorcontrib><title>Comparative multi-omics analysis reveals diverse latex-based defense strategies against pests among latex-producing organs of the fig tree (Ficus carica)</title><title>Planta</title><addtitle>Planta</addtitle><addtitle>Planta</addtitle><description>Latexes from plants contain high amounts of toxic proteins and metabolites, which attack microbes and herbivores after exudation at pest-induced wound sites. The protein and metabolite constituents of latexes are highly variable, depending on the plant species and organ. To determine the diversity of latex-based defense strategies in fig tree (Ficus carica) organs, we conducted comparative proteomic, transcriptomic and metabolomic analyses on latexes isolated from immature fruit, young petioles and lignified trunks of F. carica after constructing a unigene sequence library using RNA-seq data. Trypsin inhibitors were the most abundant proteins in petiole latex, while cysteine proteases (“ficins”) were the most abundant in immature fruit and trunk latexes. Galloylglycerol, a possible defense-related metabolite, appeared to be highly accumulated in all three latexes. The expression levels of pathogenesis-related proteins were highest in the latex of trunk, suggesting that this latex had adapted a defensive role against microbe attacks. Although young petioles and immature fruit are both unlignified soft organs, and potential food for herbivorous insects, unigenes for the sesquiterpenoid pathway, which likely produces defense-associated volatiles, and the phenylpropanoid pathway, which produces toxic furanocoumarins, were expressed less in immature fruit latex. This difference may indicate that while petioles and fruit protect the plant from attack by herbivores, the fruit must also attract insect pollinators at younger stages and animals after ripening. We also suggest possible candidate transcription factors and signal transduction proteins that are involved in the differential expression of the unigenes.</description><subject>Agriculture</subject><subject>Allelochemicals</subject><subject>Animals</subject><subject>Biodiversity</subject><subject>Biomedical and Life Sciences</subject><subject>Ecology</subject><subject>Exudation</subject><subject>Ficus - genetics</subject><subject>Ficus - immunology</subject><subject>Ficus - metabolism</subject><subject>Ficus carica</subject><subject>Forestry</subject><subject>Fruit - chemistry</subject><subject>Fruit - genetics</subject><subject>Fruit - immunology</subject><subject>Fruit - metabolism</subject><subject>Fruit trees</subject><subject>Fruits</subject><subject>Furanocoumarins</subject><subject>Gene Expression Profiling</subject><subject>Herbivores</subject><subject>Herbivory</subject><subject>Insecta - physiology</subject><subject>Insects</subject><subject>Latex</subject><subject>Latex - metabolism</subject><subject>Life Sciences</subject><subject>Metabolites</subject><subject>Metabolomics</subject><subject>Nucleotide sequence</subject><subject>Organ Specificity</subject><subject>Organs</subject><subject>ORIGINAL ARTICLE</subject><subject>Pathogenesis</subject><subject>Pathogenesis-related proteins</subject><subject>Pests</subject><subject>Phytopathology and phytopharmacy</subject><subject>Plant protection</subject><subject>Plant Sciences</subject><subject>Plant species</subject><subject>Plant Stems - chemistry</subject><subject>Plant Stems - genetics</subject><subject>Plant Stems - immunology</subject><subject>Plant Stems - metabolism</subject><subject>Pollinators</subject><subject>Proteins</subject><subject>Proteomics</subject><subject>Ribonucleic acid</subject><subject>Ripening</subject><subject>RNA</subject><subject>Signal transduction</subject><subject>Transcription factors</subject><subject>Trees</subject><subject>Trypsin</subject><subject>Trypsin inhibitors</subject><subject>Vegetal Biology</subject><subject>Volatiles</subject><subject>Wounds</subject><issn>0032-0935</issn><issn>1432-2048</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNp9UcFu1DAQtRCILoUP4ACyxIUeUsZ2nDjHakVppZW4lLPlJJPUqyRebGfVfgp_W0dZlhsXj2fmvTeaeYR8ZHDNAMpvASDnMgOmMq4UZOIV2bBc8IxDrl6TDUD6QyXkBXkXwh4gNcvyLbnglRQFZ9WG_Nm68WC8ifaIdJyHaDM32iZQM5nhOdhAPR7RDIG2CeED0sFEfMpqE7ClLXY4pVqISQF7i4nXGzuFSA8YYspGN_UnysG7dm5syp3vzRSo62h8RNrZnkaPSL_e2mYOtDHeNubqPXnTpbn44RQvya_b7w_bu2z388f99maXNXmVx6xdtlKsFNCWvCgU1LVStazqritbxoThuUxv1ZZYK5AFYFMK2UjJDFdFrcQluVp1H82gD96Oxj9rZ6y-u9nppZbOy3LG-ZEl7JcVm3b5PacN9d7NPl0qaA5MykIKtaDYimq8C8Fjd5ZloBfj9GrcoqwX47RInM8n5bkesT0z_jqVAHwFhNSaevT_Rv9P9dNK2ofo_Fk0V-lUVc7EC5gkrYI</recordid><startdate>20180601</startdate><enddate>20180601</enddate><creator>Kitajima, Sakihito</creator><creator>Aoki, Wataru</creator><creator>Shibata, Daisuke</creator><creator>Nakajima, Daisuke</creator><creator>Sakurai, Nozomu</creator><creator>Yazaki, Kazufumi</creator><creator>Munakata, Ryosuke</creator><creator>Taira, Toki</creator><creator>Kobayashi, Masaru</creator><creator>Aburaya, Shunsuke</creator><creator>Savadogo, Eric Hyrmeya</creator><creator>Hibino, Susumu</creator><creator>Yano, Haruna</creator><general>Springer Science + Business Media</general><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><general>Springer Verlag</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QP</scope><scope>7QR</scope><scope>7TM</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>RC3</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-9840-6708</orcidid></search><sort><creationdate>20180601</creationdate><title>Comparative multi-omics analysis reveals diverse latex-based defense strategies against pests among latex-producing organs of the fig tree (Ficus carica)</title><author>Kitajima, Sakihito ; Aoki, Wataru ; Shibata, Daisuke ; Nakajima, Daisuke ; Sakurai, Nozomu ; Yazaki, Kazufumi ; Munakata, Ryosuke ; Taira, Toki ; Kobayashi, Masaru ; Aburaya, Shunsuke ; Savadogo, Eric Hyrmeya ; Hibino, Susumu ; Yano, Haruna</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c494t-d001481730d726680bb88b59bff7d113a24513a9d7eb80560ec735c551a286b83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Agriculture</topic><topic>Allelochemicals</topic><topic>Animals</topic><topic>Biodiversity</topic><topic>Biomedical and Life Sciences</topic><topic>Ecology</topic><topic>Exudation</topic><topic>Ficus - genetics</topic><topic>Ficus - immunology</topic><topic>Ficus - metabolism</topic><topic>Ficus carica</topic><topic>Forestry</topic><topic>Fruit - chemistry</topic><topic>Fruit - genetics</topic><topic>Fruit - immunology</topic><topic>Fruit - metabolism</topic><topic>Fruit trees</topic><topic>Fruits</topic><topic>Furanocoumarins</topic><topic>Gene Expression Profiling</topic><topic>Herbivores</topic><topic>Herbivory</topic><topic>Insecta - physiology</topic><topic>Insects</topic><topic>Latex</topic><topic>Latex - metabolism</topic><topic>Life Sciences</topic><topic>Metabolites</topic><topic>Metabolomics</topic><topic>Nucleotide sequence</topic><topic>Organ Specificity</topic><topic>Organs</topic><topic>ORIGINAL ARTICLE</topic><topic>Pathogenesis</topic><topic>Pathogenesis-related proteins</topic><topic>Pests</topic><topic>Phytopathology and phytopharmacy</topic><topic>Plant protection</topic><topic>Plant Sciences</topic><topic>Plant species</topic><topic>Plant Stems - chemistry</topic><topic>Plant Stems - genetics</topic><topic>Plant Stems - immunology</topic><topic>Plant Stems - metabolism</topic><topic>Pollinators</topic><topic>Proteins</topic><topic>Proteomics</topic><topic>Ribonucleic acid</topic><topic>Ripening</topic><topic>RNA</topic><topic>Signal transduction</topic><topic>Transcription factors</topic><topic>Trees</topic><topic>Trypsin</topic><topic>Trypsin inhibitors</topic><topic>Vegetal Biology</topic><topic>Volatiles</topic><topic>Wounds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kitajima, Sakihito</creatorcontrib><creatorcontrib>Aoki, Wataru</creatorcontrib><creatorcontrib>Shibata, Daisuke</creatorcontrib><creatorcontrib>Nakajima, Daisuke</creatorcontrib><creatorcontrib>Sakurai, Nozomu</creatorcontrib><creatorcontrib>Yazaki, Kazufumi</creatorcontrib><creatorcontrib>Munakata, Ryosuke</creatorcontrib><creatorcontrib>Taira, Toki</creatorcontrib><creatorcontrib>Kobayashi, Masaru</creatorcontrib><creatorcontrib>Aburaya, Shunsuke</creatorcontrib><creatorcontrib>Savadogo, Eric Hyrmeya</creatorcontrib><creatorcontrib>Hibino, Susumu</creatorcontrib><creatorcontrib>Yano, Haruna</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Genetics Abstracts</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Planta</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kitajima, Sakihito</au><au>Aoki, Wataru</au><au>Shibata, Daisuke</au><au>Nakajima, Daisuke</au><au>Sakurai, Nozomu</au><au>Yazaki, Kazufumi</au><au>Munakata, Ryosuke</au><au>Taira, Toki</au><au>Kobayashi, Masaru</au><au>Aburaya, Shunsuke</au><au>Savadogo, Eric Hyrmeya</au><au>Hibino, Susumu</au><au>Yano, Haruna</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Comparative multi-omics analysis reveals diverse latex-based defense strategies against pests among latex-producing organs of the fig tree (Ficus carica)</atitle><jtitle>Planta</jtitle><stitle>Planta</stitle><addtitle>Planta</addtitle><date>2018-06-01</date><risdate>2018</risdate><volume>247</volume><issue>6</issue><spage>1423</spage><epage>1438</epage><pages>1423-1438</pages><issn>0032-0935</issn><eissn>1432-2048</eissn><abstract>Latexes from plants contain high amounts of toxic proteins and metabolites, which attack microbes and herbivores after exudation at pest-induced wound sites. The protein and metabolite constituents of latexes are highly variable, depending on the plant species and organ. To determine the diversity of latex-based defense strategies in fig tree (Ficus carica) organs, we conducted comparative proteomic, transcriptomic and metabolomic analyses on latexes isolated from immature fruit, young petioles and lignified trunks of F. carica after constructing a unigene sequence library using RNA-seq data. Trypsin inhibitors were the most abundant proteins in petiole latex, while cysteine proteases (“ficins”) were the most abundant in immature fruit and trunk latexes. Galloylglycerol, a possible defense-related metabolite, appeared to be highly accumulated in all three latexes. The expression levels of pathogenesis-related proteins were highest in the latex of trunk, suggesting that this latex had adapted a defensive role against microbe attacks. Although young petioles and immature fruit are both unlignified soft organs, and potential food for herbivorous insects, unigenes for the sesquiterpenoid pathway, which likely produces defense-associated volatiles, and the phenylpropanoid pathway, which produces toxic furanocoumarins, were expressed less in immature fruit latex. This difference may indicate that while petioles and fruit protect the plant from attack by herbivores, the fruit must also attract insect pollinators at younger stages and animals after ripening. We also suggest possible candidate transcription factors and signal transduction proteins that are involved in the differential expression of the unigenes.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Science + Business Media</pub><pmid>29536219</pmid><doi>10.1007/s00425-018-2880-3</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-9840-6708</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0032-0935 |
ispartof | Planta, 2018-06, Vol.247 (6), p.1423-1438 |
issn | 0032-0935 1432-2048 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_01814122v1 |
source | Jstor Complete Legacy; MEDLINE; SpringerLink Journals - AutoHoldings |
subjects | Agriculture Allelochemicals Animals Biodiversity Biomedical and Life Sciences Ecology Exudation Ficus - genetics Ficus - immunology Ficus - metabolism Ficus carica Forestry Fruit - chemistry Fruit - genetics Fruit - immunology Fruit - metabolism Fruit trees Fruits Furanocoumarins Gene Expression Profiling Herbivores Herbivory Insecta - physiology Insects Latex Latex - metabolism Life Sciences Metabolites Metabolomics Nucleotide sequence Organ Specificity Organs ORIGINAL ARTICLE Pathogenesis Pathogenesis-related proteins Pests Phytopathology and phytopharmacy Plant protection Plant Sciences Plant species Plant Stems - chemistry Plant Stems - genetics Plant Stems - immunology Plant Stems - metabolism Pollinators Proteins Proteomics Ribonucleic acid Ripening RNA Signal transduction Transcription factors Trees Trypsin Trypsin inhibitors Vegetal Biology Volatiles Wounds |
title | Comparative multi-omics analysis reveals diverse latex-based defense strategies against pests among latex-producing organs of the fig tree (Ficus carica) |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T10%3A13%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Comparative%20multi-omics%20analysis%20reveals%20diverse%20latex-based%20defense%20strategies%20against%20pests%20among%20latex-producing%20organs%20of%20the%20fig%20tree%20(Ficus%20carica)&rft.jtitle=Planta&rft.au=Kitajima,%20Sakihito&rft.date=2018-06-01&rft.volume=247&rft.issue=6&rft.spage=1423&rft.epage=1438&rft.pages=1423-1438&rft.issn=0032-0935&rft.eissn=1432-2048&rft_id=info:doi/10.1007/s00425-018-2880-3&rft_dat=%3Cjstor_hal_p%3E48726941%3C/jstor_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2015565381&rft_id=info:pmid/29536219&rft_jstor_id=48726941&rfr_iscdi=true |