Induced minors and well-quasi-ordering

A graph H is an induced minor of a graph G if it can be obtained from an induced subgraph of G by contracting edges. Otherwise, G is said to be H-induced minor-free. Robin Thomas showed that K4-induced minor-free graphs are well-quasi-ordered by induced minors (Robin Thomas, 1985, [24]). We provide...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of combinatorial theory. Series B 2019-01, Vol.134, p.110-142
Hauptverfasser: Błasiok, Jarosław, Kamiński, Marcin, Raymond, Jean-Florent, Trunck, Théophile
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 142
container_issue
container_start_page 110
container_title Journal of combinatorial theory. Series B
container_volume 134
creator Błasiok, Jarosław
Kamiński, Marcin
Raymond, Jean-Florent
Trunck, Théophile
description A graph H is an induced minor of a graph G if it can be obtained from an induced subgraph of G by contracting edges. Otherwise, G is said to be H-induced minor-free. Robin Thomas showed that K4-induced minor-free graphs are well-quasi-ordered by induced minors (Robin Thomas, 1985, [24]). We provide a dichotomy theorem for H-induced minor-free graphs and show that the class of H-induced minor-free graphs is well-quasi-ordered by induced minors if and only if H is an induced minor of the Gem (the path on 4 vertices plus a dominating vertex) or of the graph obtained by adding a vertex of degree 2 to the complete graph on 4 vertices. To this end we prove two decomposition theorems which are of independent interest. Similar dichotomy results were previously given for subgraphs by Guoli Ding (1992) [5] and for induced subgraphs by Peter Damaschke (1990) [4].
doi_str_mv 10.1016/j.jctb.2018.05.005
format Article
fullrecord <record><control><sourceid>elsevier_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01813903v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0095895618300443</els_id><sourcerecordid>S0095895618300443</sourcerecordid><originalsourceid>FETCH-LOGICAL-c378t-3625c08d00d074047486b218621457e26d92d655099e4d6e94739a8a1196a3193</originalsourceid><addsrcrecordid>eNp9kEFLwzAYhoMoWKd_wFNPgofUL0mTJuBlDHWDgRc9hyzJNKVrNekm_ntTJh49ffDxPi-8D0LXBCoCRNy1VWvHTUWByAp4BcBPUEFACQwK6CkqABTHUnFxji5SagGAsUYW6GbVu731rtyFfoipNL0rv3zX4c-9SQEP0fkY-rdLdLY1XfJXv3eGXh8fXhZLvH5-Wi3ma2xz24iZoNyCdAAOmhrqppZiQ4kUlNS88VQ4RZ3gHJTytRNe1Q1TRhpClDCMKDZDt8fed9Ppjxh2Jn7rwQS9nK_19MsDCVPADiRn6TFr45BS9Ns_gICerOhWT1b0ZEUD19lKhu6PkM8rDsFHnWzwfTYQorejdkP4D_8BEbhnTA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Induced minors and well-quasi-ordering</title><source>Elsevier ScienceDirect Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Błasiok, Jarosław ; Kamiński, Marcin ; Raymond, Jean-Florent ; Trunck, Théophile</creator><creatorcontrib>Błasiok, Jarosław ; Kamiński, Marcin ; Raymond, Jean-Florent ; Trunck, Théophile</creatorcontrib><description>A graph H is an induced minor of a graph G if it can be obtained from an induced subgraph of G by contracting edges. Otherwise, G is said to be H-induced minor-free. Robin Thomas showed that K4-induced minor-free graphs are well-quasi-ordered by induced minors (Robin Thomas, 1985, [24]). We provide a dichotomy theorem for H-induced minor-free graphs and show that the class of H-induced minor-free graphs is well-quasi-ordered by induced minors if and only if H is an induced minor of the Gem (the path on 4 vertices plus a dominating vertex) or of the graph obtained by adding a vertex of degree 2 to the complete graph on 4 vertices. To this end we prove two decomposition theorems which are of independent interest. Similar dichotomy results were previously given for subgraphs by Guoli Ding (1992) [5] and for induced subgraphs by Peter Damaschke (1990) [4].</description><identifier>ISSN: 0095-8956</identifier><identifier>EISSN: 1096-0902</identifier><identifier>DOI: 10.1016/j.jctb.2018.05.005</identifier><language>eng</language><publisher>Elsevier Inc</publisher><subject>Combinatorics ; Computer Science ; Discrete Mathematics ; Induced minors ; Mathematics ; Structural graph theory ; Well-quasi-ordering</subject><ispartof>Journal of combinatorial theory. Series B, 2019-01, Vol.134, p.110-142</ispartof><rights>2018 Elsevier Inc.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c378t-3625c08d00d074047486b218621457e26d92d655099e4d6e94739a8a1196a3193</citedby><cites>FETCH-LOGICAL-c378t-3625c08d00d074047486b218621457e26d92d655099e4d6e94739a8a1196a3193</cites><orcidid>0000-0003-4646-7602</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0095895618300443$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://hal.science/hal-01813903$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Błasiok, Jarosław</creatorcontrib><creatorcontrib>Kamiński, Marcin</creatorcontrib><creatorcontrib>Raymond, Jean-Florent</creatorcontrib><creatorcontrib>Trunck, Théophile</creatorcontrib><title>Induced minors and well-quasi-ordering</title><title>Journal of combinatorial theory. Series B</title><description>A graph H is an induced minor of a graph G if it can be obtained from an induced subgraph of G by contracting edges. Otherwise, G is said to be H-induced minor-free. Robin Thomas showed that K4-induced minor-free graphs are well-quasi-ordered by induced minors (Robin Thomas, 1985, [24]). We provide a dichotomy theorem for H-induced minor-free graphs and show that the class of H-induced minor-free graphs is well-quasi-ordered by induced minors if and only if H is an induced minor of the Gem (the path on 4 vertices plus a dominating vertex) or of the graph obtained by adding a vertex of degree 2 to the complete graph on 4 vertices. To this end we prove two decomposition theorems which are of independent interest. Similar dichotomy results were previously given for subgraphs by Guoli Ding (1992) [5] and for induced subgraphs by Peter Damaschke (1990) [4].</description><subject>Combinatorics</subject><subject>Computer Science</subject><subject>Discrete Mathematics</subject><subject>Induced minors</subject><subject>Mathematics</subject><subject>Structural graph theory</subject><subject>Well-quasi-ordering</subject><issn>0095-8956</issn><issn>1096-0902</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kEFLwzAYhoMoWKd_wFNPgofUL0mTJuBlDHWDgRc9hyzJNKVrNekm_ntTJh49ffDxPi-8D0LXBCoCRNy1VWvHTUWByAp4BcBPUEFACQwK6CkqABTHUnFxji5SagGAsUYW6GbVu731rtyFfoipNL0rv3zX4c-9SQEP0fkY-rdLdLY1XfJXv3eGXh8fXhZLvH5-Wi3ma2xz24iZoNyCdAAOmhrqppZiQ4kUlNS88VQ4RZ3gHJTytRNe1Q1TRhpClDCMKDZDt8fed9Ppjxh2Jn7rwQS9nK_19MsDCVPADiRn6TFr45BS9Ns_gICerOhWT1b0ZEUD19lKhu6PkM8rDsFHnWzwfTYQorejdkP4D_8BEbhnTA</recordid><startdate>201901</startdate><enddate>201901</enddate><creator>Błasiok, Jarosław</creator><creator>Kamiński, Marcin</creator><creator>Raymond, Jean-Florent</creator><creator>Trunck, Théophile</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0003-4646-7602</orcidid></search><sort><creationdate>201901</creationdate><title>Induced minors and well-quasi-ordering</title><author>Błasiok, Jarosław ; Kamiński, Marcin ; Raymond, Jean-Florent ; Trunck, Théophile</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c378t-3625c08d00d074047486b218621457e26d92d655099e4d6e94739a8a1196a3193</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Combinatorics</topic><topic>Computer Science</topic><topic>Discrete Mathematics</topic><topic>Induced minors</topic><topic>Mathematics</topic><topic>Structural graph theory</topic><topic>Well-quasi-ordering</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Błasiok, Jarosław</creatorcontrib><creatorcontrib>Kamiński, Marcin</creatorcontrib><creatorcontrib>Raymond, Jean-Florent</creatorcontrib><creatorcontrib>Trunck, Théophile</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Journal of combinatorial theory. Series B</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Błasiok, Jarosław</au><au>Kamiński, Marcin</au><au>Raymond, Jean-Florent</au><au>Trunck, Théophile</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Induced minors and well-quasi-ordering</atitle><jtitle>Journal of combinatorial theory. Series B</jtitle><date>2019-01</date><risdate>2019</risdate><volume>134</volume><spage>110</spage><epage>142</epage><pages>110-142</pages><issn>0095-8956</issn><eissn>1096-0902</eissn><abstract>A graph H is an induced minor of a graph G if it can be obtained from an induced subgraph of G by contracting edges. Otherwise, G is said to be H-induced minor-free. Robin Thomas showed that K4-induced minor-free graphs are well-quasi-ordered by induced minors (Robin Thomas, 1985, [24]). We provide a dichotomy theorem for H-induced minor-free graphs and show that the class of H-induced minor-free graphs is well-quasi-ordered by induced minors if and only if H is an induced minor of the Gem (the path on 4 vertices plus a dominating vertex) or of the graph obtained by adding a vertex of degree 2 to the complete graph on 4 vertices. To this end we prove two decomposition theorems which are of independent interest. Similar dichotomy results were previously given for subgraphs by Guoli Ding (1992) [5] and for induced subgraphs by Peter Damaschke (1990) [4].</abstract><pub>Elsevier Inc</pub><doi>10.1016/j.jctb.2018.05.005</doi><tpages>33</tpages><orcidid>https://orcid.org/0000-0003-4646-7602</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0095-8956
ispartof Journal of combinatorial theory. Series B, 2019-01, Vol.134, p.110-142
issn 0095-8956
1096-0902
language eng
recordid cdi_hal_primary_oai_HAL_hal_01813903v1
source Elsevier ScienceDirect Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Combinatorics
Computer Science
Discrete Mathematics
Induced minors
Mathematics
Structural graph theory
Well-quasi-ordering
title Induced minors and well-quasi-ordering
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T08%3A25%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Induced%20minors%20and%20well-quasi-ordering&rft.jtitle=Journal%20of%20combinatorial%20theory.%20Series%20B&rft.au=B%C5%82asiok,%20Jaros%C5%82aw&rft.date=2019-01&rft.volume=134&rft.spage=110&rft.epage=142&rft.pages=110-142&rft.issn=0095-8956&rft.eissn=1096-0902&rft_id=info:doi/10.1016/j.jctb.2018.05.005&rft_dat=%3Celsevier_hal_p%3ES0095895618300443%3C/elsevier_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0095895618300443&rfr_iscdi=true