Competition between covalent and non-covalent grafting of fluorescein isothiocyanate on double-walled carbon nanotubes: A quantitative approach
The functionalization of carbon nanotubes with fluorescent molecules is a standard procedure in many toxicity studies aiming at knowing their distribution within cells or whole organisms. Nevertheless, there is a lack of knowledge concerning the efficiency of the grafting processes, and more specifi...
Gespeichert in:
Veröffentlicht in: | Carbon (New York) 2017-10, Vol.123, p.735-743 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The functionalization of carbon nanotubes with fluorescent molecules is a standard procedure in many toxicity studies aiming at knowing their distribution within cells or whole organisms. Nevertheless, there is a lack of knowledge concerning the efficiency of the grafting processes, and more specifically concerning the question of the competition between covalent and non-covalent grafting. In this work, we investigated the grafting process of the fluorescein isothiocyanate (FITC) onto double-walled carbon nanotubes (DWNTs) using X-ray photoelectron spectroscopy, inelastic neutron scattering spectroscopy and computational simulations. We demonstrated that both covalent and non-covalent grafting occurred during the functionalization with the FITC. Moreover, we showed that a significant fraction of the fluorophore remained simply adsorbed onto the DWNTs despite thorough washing steps, which raises concerning questions about the use of this fluorophore in some toxicity studies and its possible ability to mislead their conclusions.
[Display omitted] |
---|---|
ISSN: | 0008-6223 1873-3891 |
DOI: | 10.1016/j.carbon.2017.07.070 |