Insights into solid phase epitaxy of ultrahighly doped silicon
In this study we investigate the mechanisms of growth and boron (B) incorporation into crystalline silicon (c-Si) during crystallization of amorphous doped silicon (a-Si:B) films. The process developed consists of two steps, first the chemical vapor codeposition at low temperature of Si and B atoms...
Gespeichert in:
Veröffentlicht in: | Journal of applied physics 2010-07, Vol.108 (1), p.013513-013513-5 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 013513-5 |
---|---|
container_issue | 1 |
container_start_page | 013513 |
container_title | Journal of applied physics |
container_volume | 108 |
creator | Gouyé, A. Berbezier, I. Favre, L. Aouassa, M. Amiard, G. Ronda, A. Campidelli, Y. Halimaoui, A. |
description | In this study we investigate the mechanisms of growth and boron (B) incorporation into crystalline silicon (c-Si) during crystallization of amorphous doped silicon (a-Si:B) films. The process developed consists of two steps, first the chemical vapor codeposition at low temperature of Si and B atoms to form a-Si:B layer and second the crystallization of amorphous phase during
in situ
annealing to incorporate boron atoms on the substitutional sites of c-Si. We find that the crystallization rate linearly increases with the nominal boron concentration
(
C
B
)
up to a critical
C
B
∗
which corresponds to the maximum concentration of electrically active boron atoms in the crystalline phase. In these conditions, an increase in the crystallization rate by a factor 22 as compared to the intrinsic crystallization rate is obtained. We suggest that this remarkable behavior is attributed to
D
+
charged defects associated to the activated doping atoms in agreement with the generalized Fermi level shifting model. For larger
C
B
, further boron atoms are incorporated in the amorphous phase in the form of ultrasmall clusters that do not contribute to shift the Fermi level of a-Si. As a consequence, for
C
B
>
C
B
∗
the crystallization rate does not increase any more. We also show that crystallization provides a more complete incorporation of boron atoms already present in a-Si than the codeposition of Si and B atoms in the same experimental conditions (same growth rate and temperature). This result is attributed to the lower kinetic segregation at the amorphous-crystalline (a/c) interface than at the vacuum-crystalline interface. The lower kinetic segregation results from both a higher diffusion barrier of boron atoms at the a/c interface and a lower segregation energy (due to a low a/c interface energy). |
doi_str_mv | 10.1063/1.3408556 |
format | Article |
fullrecord | <record><control><sourceid>hal_cross</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01811427v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_HAL_hal_01811427v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c352t-7b03907b515894c77276e49cb9159d97c0f91b0e4637d618aeca7bcc701ee2c23</originalsourceid><addsrcrecordid>eNp1kMFKxDAURYMoOI4u_INsXXR8r2maZKEwDOoMDLjRdUjT1EZqU5oq9u-dOqOuXD24nHvhHUIuERYIObvGBctAcp4fkRmCVIngHI7JDCDFRCqhTslZjK8AiJKpGbndtNG_1EOkvh0CjaHxJe1qEx11nR_M50hDRd-boTf1jmtGWobOlTT6xtvQnpOTyjTRXRzunDzf3z2t1sn28WGzWm4Ty3g6JKIApkAUHLlUmRUiFbnLlC0UclUqYaFSWIDLcibKHKVx1ojCWgHoXGpTNidX-93aNLrr_ZvpRx2M1-vlVk8ZoETMUvGBf6ztQ4y9q34LCHqSpFEfJO3Ymz0b7e7ZwYf2f_jHlJ5M6W9T7AsO_21I</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Insights into solid phase epitaxy of ultrahighly doped silicon</title><source>American Institute of Physics (AIP) Journals</source><source>AIP_美国物理联合会期刊回溯(NSTL购买)</source><source>Alma/SFX Local Collection</source><creator>Gouyé, A. ; Berbezier, I. ; Favre, L. ; Aouassa, M. ; Amiard, G. ; Ronda, A. ; Campidelli, Y. ; Halimaoui, A.</creator><creatorcontrib>Gouyé, A. ; Berbezier, I. ; Favre, L. ; Aouassa, M. ; Amiard, G. ; Ronda, A. ; Campidelli, Y. ; Halimaoui, A.</creatorcontrib><description>In this study we investigate the mechanisms of growth and boron (B) incorporation into crystalline silicon (c-Si) during crystallization of amorphous doped silicon (a-Si:B) films. The process developed consists of two steps, first the chemical vapor codeposition at low temperature of Si and B atoms to form a-Si:B layer and second the crystallization of amorphous phase during
in situ
annealing to incorporate boron atoms on the substitutional sites of c-Si. We find that the crystallization rate linearly increases with the nominal boron concentration
(
C
B
)
up to a critical
C
B
∗
which corresponds to the maximum concentration of electrically active boron atoms in the crystalline phase. In these conditions, an increase in the crystallization rate by a factor 22 as compared to the intrinsic crystallization rate is obtained. We suggest that this remarkable behavior is attributed to
D
+
charged defects associated to the activated doping atoms in agreement with the generalized Fermi level shifting model. For larger
C
B
, further boron atoms are incorporated in the amorphous phase in the form of ultrasmall clusters that do not contribute to shift the Fermi level of a-Si. As a consequence, for
C
B
>
C
B
∗
the crystallization rate does not increase any more. We also show that crystallization provides a more complete incorporation of boron atoms already present in a-Si than the codeposition of Si and B atoms in the same experimental conditions (same growth rate and temperature). This result is attributed to the lower kinetic segregation at the amorphous-crystalline (a/c) interface than at the vacuum-crystalline interface. The lower kinetic segregation results from both a higher diffusion barrier of boron atoms at the a/c interface and a lower segregation energy (due to a low a/c interface energy).</description><identifier>ISSN: 0021-8979</identifier><identifier>EISSN: 1089-7550</identifier><identifier>DOI: 10.1063/1.3408556</identifier><identifier>CODEN: JAPIAU</identifier><language>eng</language><publisher>American Institute of Physics</publisher><subject>Condensed Matter ; Physics</subject><ispartof>Journal of applied physics, 2010-07, Vol.108 (1), p.013513-013513-5</ispartof><rights>2010 American Institute of Physics</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c352t-7b03907b515894c77276e49cb9159d97c0f91b0e4637d618aeca7bcc701ee2c23</citedby><cites>FETCH-LOGICAL-c352t-7b03907b515894c77276e49cb9159d97c0f91b0e4637d618aeca7bcc701ee2c23</cites><orcidid>0000-0002-9010-0085</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jap/article-lookup/doi/10.1063/1.3408556$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>230,314,776,780,790,881,1553,4498,27901,27902,76126,76132</link.rule.ids><backlink>$$Uhttps://hal.science/hal-01811427$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Gouyé, A.</creatorcontrib><creatorcontrib>Berbezier, I.</creatorcontrib><creatorcontrib>Favre, L.</creatorcontrib><creatorcontrib>Aouassa, M.</creatorcontrib><creatorcontrib>Amiard, G.</creatorcontrib><creatorcontrib>Ronda, A.</creatorcontrib><creatorcontrib>Campidelli, Y.</creatorcontrib><creatorcontrib>Halimaoui, A.</creatorcontrib><title>Insights into solid phase epitaxy of ultrahighly doped silicon</title><title>Journal of applied physics</title><description>In this study we investigate the mechanisms of growth and boron (B) incorporation into crystalline silicon (c-Si) during crystallization of amorphous doped silicon (a-Si:B) films. The process developed consists of two steps, first the chemical vapor codeposition at low temperature of Si and B atoms to form a-Si:B layer and second the crystallization of amorphous phase during
in situ
annealing to incorporate boron atoms on the substitutional sites of c-Si. We find that the crystallization rate linearly increases with the nominal boron concentration
(
C
B
)
up to a critical
C
B
∗
which corresponds to the maximum concentration of electrically active boron atoms in the crystalline phase. In these conditions, an increase in the crystallization rate by a factor 22 as compared to the intrinsic crystallization rate is obtained. We suggest that this remarkable behavior is attributed to
D
+
charged defects associated to the activated doping atoms in agreement with the generalized Fermi level shifting model. For larger
C
B
, further boron atoms are incorporated in the amorphous phase in the form of ultrasmall clusters that do not contribute to shift the Fermi level of a-Si. As a consequence, for
C
B
>
C
B
∗
the crystallization rate does not increase any more. We also show that crystallization provides a more complete incorporation of boron atoms already present in a-Si than the codeposition of Si and B atoms in the same experimental conditions (same growth rate and temperature). This result is attributed to the lower kinetic segregation at the amorphous-crystalline (a/c) interface than at the vacuum-crystalline interface. The lower kinetic segregation results from both a higher diffusion barrier of boron atoms at the a/c interface and a lower segregation energy (due to a low a/c interface energy).</description><subject>Condensed Matter</subject><subject>Physics</subject><issn>0021-8979</issn><issn>1089-7550</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNp1kMFKxDAURYMoOI4u_INsXXR8r2maZKEwDOoMDLjRdUjT1EZqU5oq9u-dOqOuXD24nHvhHUIuERYIObvGBctAcp4fkRmCVIngHI7JDCDFRCqhTslZjK8AiJKpGbndtNG_1EOkvh0CjaHxJe1qEx11nR_M50hDRd-boTf1jmtGWobOlTT6xtvQnpOTyjTRXRzunDzf3z2t1sn28WGzWm4Ty3g6JKIApkAUHLlUmRUiFbnLlC0UclUqYaFSWIDLcibKHKVx1ojCWgHoXGpTNidX-93aNLrr_ZvpRx2M1-vlVk8ZoETMUvGBf6ztQ4y9q34LCHqSpFEfJO3Ymz0b7e7ZwYf2f_jHlJ5M6W9T7AsO_21I</recordid><startdate>20100701</startdate><enddate>20100701</enddate><creator>Gouyé, A.</creator><creator>Berbezier, I.</creator><creator>Favre, L.</creator><creator>Aouassa, M.</creator><creator>Amiard, G.</creator><creator>Ronda, A.</creator><creator>Campidelli, Y.</creator><creator>Halimaoui, A.</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-9010-0085</orcidid></search><sort><creationdate>20100701</creationdate><title>Insights into solid phase epitaxy of ultrahighly doped silicon</title><author>Gouyé, A. ; Berbezier, I. ; Favre, L. ; Aouassa, M. ; Amiard, G. ; Ronda, A. ; Campidelli, Y. ; Halimaoui, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c352t-7b03907b515894c77276e49cb9159d97c0f91b0e4637d618aeca7bcc701ee2c23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Condensed Matter</topic><topic>Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gouyé, A.</creatorcontrib><creatorcontrib>Berbezier, I.</creatorcontrib><creatorcontrib>Favre, L.</creatorcontrib><creatorcontrib>Aouassa, M.</creatorcontrib><creatorcontrib>Amiard, G.</creatorcontrib><creatorcontrib>Ronda, A.</creatorcontrib><creatorcontrib>Campidelli, Y.</creatorcontrib><creatorcontrib>Halimaoui, A.</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Journal of applied physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gouyé, A.</au><au>Berbezier, I.</au><au>Favre, L.</au><au>Aouassa, M.</au><au>Amiard, G.</au><au>Ronda, A.</au><au>Campidelli, Y.</au><au>Halimaoui, A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Insights into solid phase epitaxy of ultrahighly doped silicon</atitle><jtitle>Journal of applied physics</jtitle><date>2010-07-01</date><risdate>2010</risdate><volume>108</volume><issue>1</issue><spage>013513</spage><epage>013513-5</epage><pages>013513-013513-5</pages><issn>0021-8979</issn><eissn>1089-7550</eissn><coden>JAPIAU</coden><abstract>In this study we investigate the mechanisms of growth and boron (B) incorporation into crystalline silicon (c-Si) during crystallization of amorphous doped silicon (a-Si:B) films. The process developed consists of two steps, first the chemical vapor codeposition at low temperature of Si and B atoms to form a-Si:B layer and second the crystallization of amorphous phase during
in situ
annealing to incorporate boron atoms on the substitutional sites of c-Si. We find that the crystallization rate linearly increases with the nominal boron concentration
(
C
B
)
up to a critical
C
B
∗
which corresponds to the maximum concentration of electrically active boron atoms in the crystalline phase. In these conditions, an increase in the crystallization rate by a factor 22 as compared to the intrinsic crystallization rate is obtained. We suggest that this remarkable behavior is attributed to
D
+
charged defects associated to the activated doping atoms in agreement with the generalized Fermi level shifting model. For larger
C
B
, further boron atoms are incorporated in the amorphous phase in the form of ultrasmall clusters that do not contribute to shift the Fermi level of a-Si. As a consequence, for
C
B
>
C
B
∗
the crystallization rate does not increase any more. We also show that crystallization provides a more complete incorporation of boron atoms already present in a-Si than the codeposition of Si and B atoms in the same experimental conditions (same growth rate and temperature). This result is attributed to the lower kinetic segregation at the amorphous-crystalline (a/c) interface than at the vacuum-crystalline interface. The lower kinetic segregation results from both a higher diffusion barrier of boron atoms at the a/c interface and a lower segregation energy (due to a low a/c interface energy).</abstract><pub>American Institute of Physics</pub><doi>10.1063/1.3408556</doi><orcidid>https://orcid.org/0000-0002-9010-0085</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-8979 |
ispartof | Journal of applied physics, 2010-07, Vol.108 (1), p.013513-013513-5 |
issn | 0021-8979 1089-7550 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_01811427v1 |
source | American Institute of Physics (AIP) Journals; AIP_美国物理联合会期刊回溯(NSTL购买); Alma/SFX Local Collection |
subjects | Condensed Matter Physics |
title | Insights into solid phase epitaxy of ultrahighly doped silicon |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T16%3A14%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Insights%20into%20solid%20phase%20epitaxy%20of%20ultrahighly%20doped%20silicon&rft.jtitle=Journal%20of%20applied%20physics&rft.au=Gouy%C3%A9,%20A.&rft.date=2010-07-01&rft.volume=108&rft.issue=1&rft.spage=013513&rft.epage=013513-5&rft.pages=013513-013513-5&rft.issn=0021-8979&rft.eissn=1089-7550&rft.coden=JAPIAU&rft_id=info:doi/10.1063/1.3408556&rft_dat=%3Chal_cross%3Eoai_HAL_hal_01811427v1%3C/hal_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |