Insights into solid phase epitaxy of ultrahighly doped silicon

In this study we investigate the mechanisms of growth and boron (B) incorporation into crystalline silicon (c-Si) during crystallization of amorphous doped silicon (a-Si:B) films. The process developed consists of two steps, first the chemical vapor codeposition at low temperature of Si and B atoms...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied physics 2010-07, Vol.108 (1), p.013513-013513-5
Hauptverfasser: Gouyé, A., Berbezier, I., Favre, L., Aouassa, M., Amiard, G., Ronda, A., Campidelli, Y., Halimaoui, A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 013513-5
container_issue 1
container_start_page 013513
container_title Journal of applied physics
container_volume 108
creator Gouyé, A.
Berbezier, I.
Favre, L.
Aouassa, M.
Amiard, G.
Ronda, A.
Campidelli, Y.
Halimaoui, A.
description In this study we investigate the mechanisms of growth and boron (B) incorporation into crystalline silicon (c-Si) during crystallization of amorphous doped silicon (a-Si:B) films. The process developed consists of two steps, first the chemical vapor codeposition at low temperature of Si and B atoms to form a-Si:B layer and second the crystallization of amorphous phase during in situ annealing to incorporate boron atoms on the substitutional sites of c-Si. We find that the crystallization rate linearly increases with the nominal boron concentration ( C B ) up to a critical C B ∗ which corresponds to the maximum concentration of electrically active boron atoms in the crystalline phase. In these conditions, an increase in the crystallization rate by a factor 22 as compared to the intrinsic crystallization rate is obtained. We suggest that this remarkable behavior is attributed to D + charged defects associated to the activated doping atoms in agreement with the generalized Fermi level shifting model. For larger C B , further boron atoms are incorporated in the amorphous phase in the form of ultrasmall clusters that do not contribute to shift the Fermi level of a-Si. As a consequence, for C B > C B ∗ the crystallization rate does not increase any more. We also show that crystallization provides a more complete incorporation of boron atoms already present in a-Si than the codeposition of Si and B atoms in the same experimental conditions (same growth rate and temperature). This result is attributed to the lower kinetic segregation at the amorphous-crystalline (a/c) interface than at the vacuum-crystalline interface. The lower kinetic segregation results from both a higher diffusion barrier of boron atoms at the a/c interface and a lower segregation energy (due to a low a/c interface energy).
doi_str_mv 10.1063/1.3408556
format Article
fullrecord <record><control><sourceid>hal_cross</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01811427v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_HAL_hal_01811427v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c352t-7b03907b515894c77276e49cb9159d97c0f91b0e4637d618aeca7bcc701ee2c23</originalsourceid><addsrcrecordid>eNp1kMFKxDAURYMoOI4u_INsXXR8r2maZKEwDOoMDLjRdUjT1EZqU5oq9u-dOqOuXD24nHvhHUIuERYIObvGBctAcp4fkRmCVIngHI7JDCDFRCqhTslZjK8AiJKpGbndtNG_1EOkvh0CjaHxJe1qEx11nR_M50hDRd-boTf1jmtGWobOlTT6xtvQnpOTyjTRXRzunDzf3z2t1sn28WGzWm4Ty3g6JKIApkAUHLlUmRUiFbnLlC0UclUqYaFSWIDLcibKHKVx1ojCWgHoXGpTNidX-93aNLrr_ZvpRx2M1-vlVk8ZoETMUvGBf6ztQ4y9q34LCHqSpFEfJO3Ymz0b7e7ZwYf2f_jHlJ5M6W9T7AsO_21I</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Insights into solid phase epitaxy of ultrahighly doped silicon</title><source>American Institute of Physics (AIP) Journals</source><source>AIP_美国物理联合会期刊回溯(NSTL购买)</source><source>Alma/SFX Local Collection</source><creator>Gouyé, A. ; Berbezier, I. ; Favre, L. ; Aouassa, M. ; Amiard, G. ; Ronda, A. ; Campidelli, Y. ; Halimaoui, A.</creator><creatorcontrib>Gouyé, A. ; Berbezier, I. ; Favre, L. ; Aouassa, M. ; Amiard, G. ; Ronda, A. ; Campidelli, Y. ; Halimaoui, A.</creatorcontrib><description>In this study we investigate the mechanisms of growth and boron (B) incorporation into crystalline silicon (c-Si) during crystallization of amorphous doped silicon (a-Si:B) films. The process developed consists of two steps, first the chemical vapor codeposition at low temperature of Si and B atoms to form a-Si:B layer and second the crystallization of amorphous phase during in situ annealing to incorporate boron atoms on the substitutional sites of c-Si. We find that the crystallization rate linearly increases with the nominal boron concentration ( C B ) up to a critical C B ∗ which corresponds to the maximum concentration of electrically active boron atoms in the crystalline phase. In these conditions, an increase in the crystallization rate by a factor 22 as compared to the intrinsic crystallization rate is obtained. We suggest that this remarkable behavior is attributed to D + charged defects associated to the activated doping atoms in agreement with the generalized Fermi level shifting model. For larger C B , further boron atoms are incorporated in the amorphous phase in the form of ultrasmall clusters that do not contribute to shift the Fermi level of a-Si. As a consequence, for C B &gt; C B ∗ the crystallization rate does not increase any more. We also show that crystallization provides a more complete incorporation of boron atoms already present in a-Si than the codeposition of Si and B atoms in the same experimental conditions (same growth rate and temperature). This result is attributed to the lower kinetic segregation at the amorphous-crystalline (a/c) interface than at the vacuum-crystalline interface. The lower kinetic segregation results from both a higher diffusion barrier of boron atoms at the a/c interface and a lower segregation energy (due to a low a/c interface energy).</description><identifier>ISSN: 0021-8979</identifier><identifier>EISSN: 1089-7550</identifier><identifier>DOI: 10.1063/1.3408556</identifier><identifier>CODEN: JAPIAU</identifier><language>eng</language><publisher>American Institute of Physics</publisher><subject>Condensed Matter ; Physics</subject><ispartof>Journal of applied physics, 2010-07, Vol.108 (1), p.013513-013513-5</ispartof><rights>2010 American Institute of Physics</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c352t-7b03907b515894c77276e49cb9159d97c0f91b0e4637d618aeca7bcc701ee2c23</citedby><cites>FETCH-LOGICAL-c352t-7b03907b515894c77276e49cb9159d97c0f91b0e4637d618aeca7bcc701ee2c23</cites><orcidid>0000-0002-9010-0085</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jap/article-lookup/doi/10.1063/1.3408556$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>230,314,776,780,790,881,1553,4498,27901,27902,76126,76132</link.rule.ids><backlink>$$Uhttps://hal.science/hal-01811427$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Gouyé, A.</creatorcontrib><creatorcontrib>Berbezier, I.</creatorcontrib><creatorcontrib>Favre, L.</creatorcontrib><creatorcontrib>Aouassa, M.</creatorcontrib><creatorcontrib>Amiard, G.</creatorcontrib><creatorcontrib>Ronda, A.</creatorcontrib><creatorcontrib>Campidelli, Y.</creatorcontrib><creatorcontrib>Halimaoui, A.</creatorcontrib><title>Insights into solid phase epitaxy of ultrahighly doped silicon</title><title>Journal of applied physics</title><description>In this study we investigate the mechanisms of growth and boron (B) incorporation into crystalline silicon (c-Si) during crystallization of amorphous doped silicon (a-Si:B) films. The process developed consists of two steps, first the chemical vapor codeposition at low temperature of Si and B atoms to form a-Si:B layer and second the crystallization of amorphous phase during in situ annealing to incorporate boron atoms on the substitutional sites of c-Si. We find that the crystallization rate linearly increases with the nominal boron concentration ( C B ) up to a critical C B ∗ which corresponds to the maximum concentration of electrically active boron atoms in the crystalline phase. In these conditions, an increase in the crystallization rate by a factor 22 as compared to the intrinsic crystallization rate is obtained. We suggest that this remarkable behavior is attributed to D + charged defects associated to the activated doping atoms in agreement with the generalized Fermi level shifting model. For larger C B , further boron atoms are incorporated in the amorphous phase in the form of ultrasmall clusters that do not contribute to shift the Fermi level of a-Si. As a consequence, for C B &gt; C B ∗ the crystallization rate does not increase any more. We also show that crystallization provides a more complete incorporation of boron atoms already present in a-Si than the codeposition of Si and B atoms in the same experimental conditions (same growth rate and temperature). This result is attributed to the lower kinetic segregation at the amorphous-crystalline (a/c) interface than at the vacuum-crystalline interface. The lower kinetic segregation results from both a higher diffusion barrier of boron atoms at the a/c interface and a lower segregation energy (due to a low a/c interface energy).</description><subject>Condensed Matter</subject><subject>Physics</subject><issn>0021-8979</issn><issn>1089-7550</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNp1kMFKxDAURYMoOI4u_INsXXR8r2maZKEwDOoMDLjRdUjT1EZqU5oq9u-dOqOuXD24nHvhHUIuERYIObvGBctAcp4fkRmCVIngHI7JDCDFRCqhTslZjK8AiJKpGbndtNG_1EOkvh0CjaHxJe1qEx11nR_M50hDRd-boTf1jmtGWobOlTT6xtvQnpOTyjTRXRzunDzf3z2t1sn28WGzWm4Ty3g6JKIApkAUHLlUmRUiFbnLlC0UclUqYaFSWIDLcibKHKVx1ojCWgHoXGpTNidX-93aNLrr_ZvpRx2M1-vlVk8ZoETMUvGBf6ztQ4y9q34LCHqSpFEfJO3Ymz0b7e7ZwYf2f_jHlJ5M6W9T7AsO_21I</recordid><startdate>20100701</startdate><enddate>20100701</enddate><creator>Gouyé, A.</creator><creator>Berbezier, I.</creator><creator>Favre, L.</creator><creator>Aouassa, M.</creator><creator>Amiard, G.</creator><creator>Ronda, A.</creator><creator>Campidelli, Y.</creator><creator>Halimaoui, A.</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-9010-0085</orcidid></search><sort><creationdate>20100701</creationdate><title>Insights into solid phase epitaxy of ultrahighly doped silicon</title><author>Gouyé, A. ; Berbezier, I. ; Favre, L. ; Aouassa, M. ; Amiard, G. ; Ronda, A. ; Campidelli, Y. ; Halimaoui, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c352t-7b03907b515894c77276e49cb9159d97c0f91b0e4637d618aeca7bcc701ee2c23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Condensed Matter</topic><topic>Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gouyé, A.</creatorcontrib><creatorcontrib>Berbezier, I.</creatorcontrib><creatorcontrib>Favre, L.</creatorcontrib><creatorcontrib>Aouassa, M.</creatorcontrib><creatorcontrib>Amiard, G.</creatorcontrib><creatorcontrib>Ronda, A.</creatorcontrib><creatorcontrib>Campidelli, Y.</creatorcontrib><creatorcontrib>Halimaoui, A.</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Journal of applied physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gouyé, A.</au><au>Berbezier, I.</au><au>Favre, L.</au><au>Aouassa, M.</au><au>Amiard, G.</au><au>Ronda, A.</au><au>Campidelli, Y.</au><au>Halimaoui, A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Insights into solid phase epitaxy of ultrahighly doped silicon</atitle><jtitle>Journal of applied physics</jtitle><date>2010-07-01</date><risdate>2010</risdate><volume>108</volume><issue>1</issue><spage>013513</spage><epage>013513-5</epage><pages>013513-013513-5</pages><issn>0021-8979</issn><eissn>1089-7550</eissn><coden>JAPIAU</coden><abstract>In this study we investigate the mechanisms of growth and boron (B) incorporation into crystalline silicon (c-Si) during crystallization of amorphous doped silicon (a-Si:B) films. The process developed consists of two steps, first the chemical vapor codeposition at low temperature of Si and B atoms to form a-Si:B layer and second the crystallization of amorphous phase during in situ annealing to incorporate boron atoms on the substitutional sites of c-Si. We find that the crystallization rate linearly increases with the nominal boron concentration ( C B ) up to a critical C B ∗ which corresponds to the maximum concentration of electrically active boron atoms in the crystalline phase. In these conditions, an increase in the crystallization rate by a factor 22 as compared to the intrinsic crystallization rate is obtained. We suggest that this remarkable behavior is attributed to D + charged defects associated to the activated doping atoms in agreement with the generalized Fermi level shifting model. For larger C B , further boron atoms are incorporated in the amorphous phase in the form of ultrasmall clusters that do not contribute to shift the Fermi level of a-Si. As a consequence, for C B &gt; C B ∗ the crystallization rate does not increase any more. We also show that crystallization provides a more complete incorporation of boron atoms already present in a-Si than the codeposition of Si and B atoms in the same experimental conditions (same growth rate and temperature). This result is attributed to the lower kinetic segregation at the amorphous-crystalline (a/c) interface than at the vacuum-crystalline interface. The lower kinetic segregation results from both a higher diffusion barrier of boron atoms at the a/c interface and a lower segregation energy (due to a low a/c interface energy).</abstract><pub>American Institute of Physics</pub><doi>10.1063/1.3408556</doi><orcidid>https://orcid.org/0000-0002-9010-0085</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-8979
ispartof Journal of applied physics, 2010-07, Vol.108 (1), p.013513-013513-5
issn 0021-8979
1089-7550
language eng
recordid cdi_hal_primary_oai_HAL_hal_01811427v1
source American Institute of Physics (AIP) Journals; AIP_美国物理联合会期刊回溯(NSTL购买); Alma/SFX Local Collection
subjects Condensed Matter
Physics
title Insights into solid phase epitaxy of ultrahighly doped silicon
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T16%3A14%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Insights%20into%20solid%20phase%20epitaxy%20of%20ultrahighly%20doped%20silicon&rft.jtitle=Journal%20of%20applied%20physics&rft.au=Gouy%C3%A9,%20A.&rft.date=2010-07-01&rft.volume=108&rft.issue=1&rft.spage=013513&rft.epage=013513-5&rft.pages=013513-013513-5&rft.issn=0021-8979&rft.eissn=1089-7550&rft.coden=JAPIAU&rft_id=info:doi/10.1063/1.3408556&rft_dat=%3Chal_cross%3Eoai_HAL_hal_01811427v1%3C/hal_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true