Intrathalline Metabolite Profiles in the Lichen Argopsis friesiana Shape Gastropod Grazing Patterns
Lichen-gastropod interactions generally focus on the potential deterrent or toxic role of secondary metabolites. To better understand lichen-gastropod interactions, a controlled feeding experiment was designed to identify the parts of the lichen Argopsis friesiana consumed by the Subantarctic land s...
Gespeichert in:
Veröffentlicht in: | Journal of chemical ecology 2018-05, Vol.44 (5), p.471-482 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 482 |
---|---|
container_issue | 5 |
container_start_page | 471 |
container_title | Journal of chemical ecology |
container_volume | 44 |
creator | Gadea, Alice Le Lamer, Anne-Cécile Le Gall, Sophie Jonard, Catherine Ferron, Solenn Catheline, Daniel Ertz, Damien Le Pogam, Pierre Boustie, Joël Lohézic - Le Devehat, Françoise Charrier, Maryvonne |
description | Lichen-gastropod interactions generally focus on the potential deterrent or toxic role of secondary metabolites. To better understand lichen-gastropod interactions, a controlled feeding experiment was designed to identify the parts of the lichen
Argopsis friesiana
consumed by the Subantarctic land snail
Notodiscus hookeri.
Besides profiling secondary metabolites in various lichen parts (apothecia, cephalodia, phyllocladia and fungal axis of the pseudopodetium), we investigated potentially beneficial resources that snails can utilize from the lichen (carbohydrates, amino acids, fatty acids, polysaccharides and total nitrogen).
Notodiscus hookeri
preferred cephalodia and algal layers, which had high contents of carbohydrates, nitrogen, or both. Apothecia were avoided, perhaps due to their low contents of sugars and polyols. Although pseudopodetia were characterized by high content of arabitol, they were also rich in medullary secondary compounds, which may explain why they were not consumed. Thus, the balance between nutrients (particularly nitrogen and polyols) and secondary metabolites appears to play a key role in the feeding preferences of this snail. |
doi_str_mv | 10.1007/s10886-018-0953-1 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01806586v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2020628527</sourcerecordid><originalsourceid>FETCH-LOGICAL-c449t-9d3744fccca33181354f586ea4fc550495234b6941a6edbd9be9c39582559dcc3</originalsourceid><addsrcrecordid>eNp1kU1v3CAQQFGVqtmk_QG9VEg99eB2wIDNcRUlm0hbNVKTM8IY7xI54AIbKfn1xXI-TjmBZh5vhhmEvhL4SQCaX4lA24oKSFuB5HVFPqAV4U25cEGO0ApAlkxdk2N0ktIdAFDR8k_omEpBCDRshcyVz1HnvR5H5y3-bbPuwuiyxdcxDG60CTuP897irTN76_E67sKUXMJDdDY57TX-u9eTxRudcgxT6PEm6ifnd_ha52yjT5_Rx0GPyX55Pk_R7cX5zdlltf2zuTpbbyvDmMyV7OuGscEYo0vLLak5G3grrC4xzoFJTmvWCcmIFrbvetlZaWrJW8q57I2pT9GPxVt-o6bo7nV8VEE7dbneqjlWBgWiKB9IYb8v7BTDv4NNWd2FQ_SlPUWBgqAtp02hyEKZGFKKdnjVElDzCtSygtms5hWo2fzt2Xzo7m3_-uJl5gWgC5BKyu9sfCv9vvU_XuuQmQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2020628527</pqid></control><display><type>article</type><title>Intrathalline Metabolite Profiles in the Lichen Argopsis friesiana Shape Gastropod Grazing Patterns</title><source>SpringerLink Journals - AutoHoldings</source><creator>Gadea, Alice ; Le Lamer, Anne-Cécile ; Le Gall, Sophie ; Jonard, Catherine ; Ferron, Solenn ; Catheline, Daniel ; Ertz, Damien ; Le Pogam, Pierre ; Boustie, Joël ; Lohézic - Le Devehat, Françoise ; Charrier, Maryvonne</creator><creatorcontrib>Gadea, Alice ; Le Lamer, Anne-Cécile ; Le Gall, Sophie ; Jonard, Catherine ; Ferron, Solenn ; Catheline, Daniel ; Ertz, Damien ; Le Pogam, Pierre ; Boustie, Joël ; Lohézic - Le Devehat, Françoise ; Charrier, Maryvonne</creatorcontrib><description>Lichen-gastropod interactions generally focus on the potential deterrent or toxic role of secondary metabolites. To better understand lichen-gastropod interactions, a controlled feeding experiment was designed to identify the parts of the lichen
Argopsis friesiana
consumed by the Subantarctic land snail
Notodiscus hookeri.
Besides profiling secondary metabolites in various lichen parts (apothecia, cephalodia, phyllocladia and fungal axis of the pseudopodetium), we investigated potentially beneficial resources that snails can utilize from the lichen (carbohydrates, amino acids, fatty acids, polysaccharides and total nitrogen).
Notodiscus hookeri
preferred cephalodia and algal layers, which had high contents of carbohydrates, nitrogen, or both. Apothecia were avoided, perhaps due to their low contents of sugars and polyols. Although pseudopodetia were characterized by high content of arabitol, they were also rich in medullary secondary compounds, which may explain why they were not consumed. Thus, the balance between nutrients (particularly nitrogen and polyols) and secondary metabolites appears to play a key role in the feeding preferences of this snail.</description><identifier>ISSN: 0098-0331</identifier><identifier>EISSN: 1573-1561</identifier><identifier>DOI: 10.1007/s10886-018-0953-1</identifier><identifier>PMID: 29611074</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Agriculture ; Algae ; Amino acids ; Apothecia ; Argopsis ; Biochemistry ; Biodiversity and Ecology ; Biological Microscopy ; Biomedical and Life Sciences ; Carbohydrates ; Cephalodia ; Chemical ecology ; Ecology ; Entomology ; Environmental Sciences ; Fatty acids ; Feeding ; Lichens ; Life Sciences ; Metabolites ; Nitrogen ; Nutrients ; Polyols ; Polysaccharides ; Saccharides ; Secondary metabolites ; Snails ; Sugar</subject><ispartof>Journal of chemical ecology, 2018-05, Vol.44 (5), p.471-482</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2018</rights><rights>Journal of Chemical Ecology is a copyright of Springer, (2018). All Rights Reserved.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c449t-9d3744fccca33181354f586ea4fc550495234b6941a6edbd9be9c39582559dcc3</citedby><cites>FETCH-LOGICAL-c449t-9d3744fccca33181354f586ea4fc550495234b6941a6edbd9be9c39582559dcc3</cites><orcidid>0000-0003-4307-4942 ; 0000-0002-7516-0514 ; 0000-0002-3936-3859 ; 0000-0002-3351-4708</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10886-018-0953-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10886-018-0953-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29611074$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://univ-rennes.hal.science/hal-01806586$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Gadea, Alice</creatorcontrib><creatorcontrib>Le Lamer, Anne-Cécile</creatorcontrib><creatorcontrib>Le Gall, Sophie</creatorcontrib><creatorcontrib>Jonard, Catherine</creatorcontrib><creatorcontrib>Ferron, Solenn</creatorcontrib><creatorcontrib>Catheline, Daniel</creatorcontrib><creatorcontrib>Ertz, Damien</creatorcontrib><creatorcontrib>Le Pogam, Pierre</creatorcontrib><creatorcontrib>Boustie, Joël</creatorcontrib><creatorcontrib>Lohézic - Le Devehat, Françoise</creatorcontrib><creatorcontrib>Charrier, Maryvonne</creatorcontrib><title>Intrathalline Metabolite Profiles in the Lichen Argopsis friesiana Shape Gastropod Grazing Patterns</title><title>Journal of chemical ecology</title><addtitle>J Chem Ecol</addtitle><addtitle>J Chem Ecol</addtitle><description>Lichen-gastropod interactions generally focus on the potential deterrent or toxic role of secondary metabolites. To better understand lichen-gastropod interactions, a controlled feeding experiment was designed to identify the parts of the lichen
Argopsis friesiana
consumed by the Subantarctic land snail
Notodiscus hookeri.
Besides profiling secondary metabolites in various lichen parts (apothecia, cephalodia, phyllocladia and fungal axis of the pseudopodetium), we investigated potentially beneficial resources that snails can utilize from the lichen (carbohydrates, amino acids, fatty acids, polysaccharides and total nitrogen).
Notodiscus hookeri
preferred cephalodia and algal layers, which had high contents of carbohydrates, nitrogen, or both. Apothecia were avoided, perhaps due to their low contents of sugars and polyols. Although pseudopodetia were characterized by high content of arabitol, they were also rich in medullary secondary compounds, which may explain why they were not consumed. Thus, the balance between nutrients (particularly nitrogen and polyols) and secondary metabolites appears to play a key role in the feeding preferences of this snail.</description><subject>Agriculture</subject><subject>Algae</subject><subject>Amino acids</subject><subject>Apothecia</subject><subject>Argopsis</subject><subject>Biochemistry</subject><subject>Biodiversity and Ecology</subject><subject>Biological Microscopy</subject><subject>Biomedical and Life Sciences</subject><subject>Carbohydrates</subject><subject>Cephalodia</subject><subject>Chemical ecology</subject><subject>Ecology</subject><subject>Entomology</subject><subject>Environmental Sciences</subject><subject>Fatty acids</subject><subject>Feeding</subject><subject>Lichens</subject><subject>Life Sciences</subject><subject>Metabolites</subject><subject>Nitrogen</subject><subject>Nutrients</subject><subject>Polyols</subject><subject>Polysaccharides</subject><subject>Saccharides</subject><subject>Secondary metabolites</subject><subject>Snails</subject><subject>Sugar</subject><issn>0098-0331</issn><issn>1573-1561</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kU1v3CAQQFGVqtmk_QG9VEg99eB2wIDNcRUlm0hbNVKTM8IY7xI54AIbKfn1xXI-TjmBZh5vhhmEvhL4SQCaX4lA24oKSFuB5HVFPqAV4U25cEGO0ApAlkxdk2N0ktIdAFDR8k_omEpBCDRshcyVz1HnvR5H5y3-bbPuwuiyxdcxDG60CTuP897irTN76_E67sKUXMJDdDY57TX-u9eTxRudcgxT6PEm6ifnd_ha52yjT5_Rx0GPyX55Pk_R7cX5zdlltf2zuTpbbyvDmMyV7OuGscEYo0vLLak5G3grrC4xzoFJTmvWCcmIFrbvetlZaWrJW8q57I2pT9GPxVt-o6bo7nV8VEE7dbneqjlWBgWiKB9IYb8v7BTDv4NNWd2FQ_SlPUWBgqAtp02hyEKZGFKKdnjVElDzCtSygtms5hWo2fzt2Xzo7m3_-uJl5gWgC5BKyu9sfCv9vvU_XuuQmQ</recordid><startdate>20180501</startdate><enddate>20180501</enddate><creator>Gadea, Alice</creator><creator>Le Lamer, Anne-Cécile</creator><creator>Le Gall, Sophie</creator><creator>Jonard, Catherine</creator><creator>Ferron, Solenn</creator><creator>Catheline, Daniel</creator><creator>Ertz, Damien</creator><creator>Le Pogam, Pierre</creator><creator>Boustie, Joël</creator><creator>Lohézic - Le Devehat, Françoise</creator><creator>Charrier, Maryvonne</creator><general>Springer US</general><general>Springer Nature B.V</general><general>Springer Verlag</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7U7</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>RC3</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0003-4307-4942</orcidid><orcidid>https://orcid.org/0000-0002-7516-0514</orcidid><orcidid>https://orcid.org/0000-0002-3936-3859</orcidid><orcidid>https://orcid.org/0000-0002-3351-4708</orcidid></search><sort><creationdate>20180501</creationdate><title>Intrathalline Metabolite Profiles in the Lichen Argopsis friesiana Shape Gastropod Grazing Patterns</title><author>Gadea, Alice ; Le Lamer, Anne-Cécile ; Le Gall, Sophie ; Jonard, Catherine ; Ferron, Solenn ; Catheline, Daniel ; Ertz, Damien ; Le Pogam, Pierre ; Boustie, Joël ; Lohézic - Le Devehat, Françoise ; Charrier, Maryvonne</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c449t-9d3744fccca33181354f586ea4fc550495234b6941a6edbd9be9c39582559dcc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Agriculture</topic><topic>Algae</topic><topic>Amino acids</topic><topic>Apothecia</topic><topic>Argopsis</topic><topic>Biochemistry</topic><topic>Biodiversity and Ecology</topic><topic>Biological Microscopy</topic><topic>Biomedical and Life Sciences</topic><topic>Carbohydrates</topic><topic>Cephalodia</topic><topic>Chemical ecology</topic><topic>Ecology</topic><topic>Entomology</topic><topic>Environmental Sciences</topic><topic>Fatty acids</topic><topic>Feeding</topic><topic>Lichens</topic><topic>Life Sciences</topic><topic>Metabolites</topic><topic>Nitrogen</topic><topic>Nutrients</topic><topic>Polyols</topic><topic>Polysaccharides</topic><topic>Saccharides</topic><topic>Secondary metabolites</topic><topic>Snails</topic><topic>Sugar</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gadea, Alice</creatorcontrib><creatorcontrib>Le Lamer, Anne-Cécile</creatorcontrib><creatorcontrib>Le Gall, Sophie</creatorcontrib><creatorcontrib>Jonard, Catherine</creatorcontrib><creatorcontrib>Ferron, Solenn</creatorcontrib><creatorcontrib>Catheline, Daniel</creatorcontrib><creatorcontrib>Ertz, Damien</creatorcontrib><creatorcontrib>Le Pogam, Pierre</creatorcontrib><creatorcontrib>Boustie, Joël</creatorcontrib><creatorcontrib>Lohézic - Le Devehat, Françoise</creatorcontrib><creatorcontrib>Charrier, Maryvonne</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Toxicology Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Journal of chemical ecology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gadea, Alice</au><au>Le Lamer, Anne-Cécile</au><au>Le Gall, Sophie</au><au>Jonard, Catherine</au><au>Ferron, Solenn</au><au>Catheline, Daniel</au><au>Ertz, Damien</au><au>Le Pogam, Pierre</au><au>Boustie, Joël</au><au>Lohézic - Le Devehat, Françoise</au><au>Charrier, Maryvonne</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Intrathalline Metabolite Profiles in the Lichen Argopsis friesiana Shape Gastropod Grazing Patterns</atitle><jtitle>Journal of chemical ecology</jtitle><stitle>J Chem Ecol</stitle><addtitle>J Chem Ecol</addtitle><date>2018-05-01</date><risdate>2018</risdate><volume>44</volume><issue>5</issue><spage>471</spage><epage>482</epage><pages>471-482</pages><issn>0098-0331</issn><eissn>1573-1561</eissn><abstract>Lichen-gastropod interactions generally focus on the potential deterrent or toxic role of secondary metabolites. To better understand lichen-gastropod interactions, a controlled feeding experiment was designed to identify the parts of the lichen
Argopsis friesiana
consumed by the Subantarctic land snail
Notodiscus hookeri.
Besides profiling secondary metabolites in various lichen parts (apothecia, cephalodia, phyllocladia and fungal axis of the pseudopodetium), we investigated potentially beneficial resources that snails can utilize from the lichen (carbohydrates, amino acids, fatty acids, polysaccharides and total nitrogen).
Notodiscus hookeri
preferred cephalodia and algal layers, which had high contents of carbohydrates, nitrogen, or both. Apothecia were avoided, perhaps due to their low contents of sugars and polyols. Although pseudopodetia were characterized by high content of arabitol, they were also rich in medullary secondary compounds, which may explain why they were not consumed. Thus, the balance between nutrients (particularly nitrogen and polyols) and secondary metabolites appears to play a key role in the feeding preferences of this snail.</abstract><cop>New York</cop><pub>Springer US</pub><pmid>29611074</pmid><doi>10.1007/s10886-018-0953-1</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-4307-4942</orcidid><orcidid>https://orcid.org/0000-0002-7516-0514</orcidid><orcidid>https://orcid.org/0000-0002-3936-3859</orcidid><orcidid>https://orcid.org/0000-0002-3351-4708</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0098-0331 |
ispartof | Journal of chemical ecology, 2018-05, Vol.44 (5), p.471-482 |
issn | 0098-0331 1573-1561 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_01806586v1 |
source | SpringerLink Journals - AutoHoldings |
subjects | Agriculture Algae Amino acids Apothecia Argopsis Biochemistry Biodiversity and Ecology Biological Microscopy Biomedical and Life Sciences Carbohydrates Cephalodia Chemical ecology Ecology Entomology Environmental Sciences Fatty acids Feeding Lichens Life Sciences Metabolites Nitrogen Nutrients Polyols Polysaccharides Saccharides Secondary metabolites Snails Sugar |
title | Intrathalline Metabolite Profiles in the Lichen Argopsis friesiana Shape Gastropod Grazing Patterns |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T01%3A23%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Intrathalline%20Metabolite%20Profiles%20in%20the%20Lichen%20Argopsis%20friesiana%20Shape%20Gastropod%20Grazing%20Patterns&rft.jtitle=Journal%20of%20chemical%20ecology&rft.au=Gadea,%20Alice&rft.date=2018-05-01&rft.volume=44&rft.issue=5&rft.spage=471&rft.epage=482&rft.pages=471-482&rft.issn=0098-0331&rft.eissn=1573-1561&rft_id=info:doi/10.1007/s10886-018-0953-1&rft_dat=%3Cproquest_hal_p%3E2020628527%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2020628527&rft_id=info:pmid/29611074&rfr_iscdi=true |