Biotic interactions as drivers of algal origin and evolution

Biotic interactions underlie life’s diversity and are the lynchpin to understanding its complexity and resilience within an ecological niche. Algal biologists have embraced this paradigm, and studies building on the explosive growth in omics and cell biology methods have facilitated the in-depth ana...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The New phytologist 2017-11, Vol.216 (3), p.670-681
Hauptverfasser: Brodie, Juliet, Ball, Steven G., Bouget, François‐Yves, Chan, Cheong Xin, De Clerck, Olivier, Cock, J. Mark, Gachon, Claire, Grossman, Arthur R., Mock, Thomas, Raven, John A., Saha, Mahasweta, Smith, Alison G., Vardi, Assaf, Yoon, Hwan Su, Bhattacharya, Debashish
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 681
container_issue 3
container_start_page 670
container_title The New phytologist
container_volume 216
creator Brodie, Juliet
Ball, Steven G.
Bouget, François‐Yves
Chan, Cheong Xin
De Clerck, Olivier
Cock, J. Mark
Gachon, Claire
Grossman, Arthur R.
Mock, Thomas
Raven, John A.
Saha, Mahasweta
Smith, Alison G.
Vardi, Assaf
Yoon, Hwan Su
Bhattacharya, Debashish
description Biotic interactions underlie life’s diversity and are the lynchpin to understanding its complexity and resilience within an ecological niche. Algal biologists have embraced this paradigm, and studies building on the explosive growth in omics and cell biology methods have facilitated the in-depth analysis of nonmodel organisms and communities from a variety of ecosystems. In turn, these advances have enabled a major revision of our understanding of the origin and evolution of photosynthesis in eukaryotes, bacterial–algal interactions, control of massive algal blooms in the ocean, and the maintenance and degradation of coral reefs. Here, we review some of the most exciting developments in the field of algal biotic interactions and identify challenges for scientists in the coming years. We foresee the development of an algal knowledgebase that integrates ecosystem-wide omics data and the development of molecular tools/resources to perform functional analyses of individuals in isolation and in populations. These assets will allow us to move beyond mechanistic studies of a single species towards understanding the interactions amongst algae and other organisms in both the laboratory and the field.
doi_str_mv 10.1111/nph.14760
format Article
fullrecord <record><control><sourceid>jstor_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01806393v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>90015064</jstor_id><sourcerecordid>90015064</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5430-3b40b191fb56c9676f6b02c4f1b36ab021f8b8892d04f74a63c215c82f55278b3</originalsourceid><addsrcrecordid>eNqFkUFrFDEUx4NY7Fo9-AGUAS96mPa9JJNkwEst2i0s6kHBW8hkkzbL7GSbzKz025t12xWEYi4vhN_78fL-hLxCOMVyzobNzSlyKeAJmSEXba2QyadkBkBVLbj4eUye57wCgLYR9Bk5pko1EgWfkQ8fQxyDrcIwumTsGOKQK5OrZQpbl3IVfWX6a9NXMYXrMFRmWFZuG_tpR74gR9702b28ryfkx-dP3y_m9eLr5dXF-aK2DWdQs45Dhy36rhG2FVJ40QG13GPHhClX9KpTqqVL4F5yI5il2FhFfdNQqTp2Qt7vvTem15sU1ibd6WiCnp8v9O4NUIFgLdtiYd_t2U2Kt5PLo16HbF3fm8HFKWsKFJRCYOy_KLaMU1UWukPf_oOu4pSG8ulCNVJRKlH-ndOmmHNy_jAsgt4lpUtS-k9ShX1zb5y6tVseyIdoCnC2B36F3t09btJfvs0flK_3Has8xnToaAGwgWL8DRd6or0</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1957822717</pqid></control><display><type>article</type><title>Biotic interactions as drivers of algal origin and evolution</title><source>MEDLINE</source><source>JSTOR Archive Collection A-Z Listing</source><source>Wiley Free Content</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Wiley Online Library All Journals</source><creator>Brodie, Juliet ; Ball, Steven G. ; Bouget, François‐Yves ; Chan, Cheong Xin ; De Clerck, Olivier ; Cock, J. Mark ; Gachon, Claire ; Grossman, Arthur R. ; Mock, Thomas ; Raven, John A. ; Saha, Mahasweta ; Smith, Alison G. ; Vardi, Assaf ; Yoon, Hwan Su ; Bhattacharya, Debashish</creator><creatorcontrib>Brodie, Juliet ; Ball, Steven G. ; Bouget, François‐Yves ; Chan, Cheong Xin ; De Clerck, Olivier ; Cock, J. Mark ; Gachon, Claire ; Grossman, Arthur R. ; Mock, Thomas ; Raven, John A. ; Saha, Mahasweta ; Smith, Alison G. ; Vardi, Assaf ; Yoon, Hwan Su ; Bhattacharya, Debashish</creatorcontrib><description>Biotic interactions underlie life’s diversity and are the lynchpin to understanding its complexity and resilience within an ecological niche. Algal biologists have embraced this paradigm, and studies building on the explosive growth in omics and cell biology methods have facilitated the in-depth analysis of nonmodel organisms and communities from a variety of ecosystems. In turn, these advances have enabled a major revision of our understanding of the origin and evolution of photosynthesis in eukaryotes, bacterial–algal interactions, control of massive algal blooms in the ocean, and the maintenance and degradation of coral reefs. Here, we review some of the most exciting developments in the field of algal biotic interactions and identify challenges for scientists in the coming years. We foresee the development of an algal knowledgebase that integrates ecosystem-wide omics data and the development of molecular tools/resources to perform functional analyses of individuals in isolation and in populations. These assets will allow us to move beyond mechanistic studies of a single species towards understanding the interactions amongst algae and other organisms in both the laboratory and the field.</description><identifier>ISSN: 0028-646X</identifier><identifier>EISSN: 1469-8137</identifier><identifier>DOI: 10.1111/nph.14760</identifier><identifier>PMID: 28857164</identifier><language>eng</language><publisher>England: New Phytologist Trust</publisher><subject>Algae ; algal blooms ; Animals ; Anthozoa - physiology ; Aquatic ecosystems ; Aquatic environment ; Bacteria ; biocenosis ; Biodiversity ; Biological Evolution ; biologists ; Biology ; Botanics ; Chromatophores ; Climate change ; coral reefs ; Cytology ; Dinoflagellida - physiology ; Ecological function ; Ecosystem biology ; ecosystems ; endosymbiosis ; Energy flow ; Epibionts ; Epibiosis ; Eukaryotes ; eukaryotic cells ; Eutrophication ; Evolution ; Evolutionary genetics ; Functionals ; Gene transfer ; Genes ; Genomes ; Genomics ; Global climate ; Herbivory ; holobiont ; Horizontal transfer ; Host-Pathogen Interactions ; Human nutrition ; Life Sciences ; Marine environment ; Marine invertebrates ; Metabolic flux ; Neighborhoods ; niches ; Nutrient flow ; Nutrition ; Organelles ; organellogenesis ; Organisms ; Phaeophyceae - physiology ; Photosynthesis ; Phycodnaviridae - pathogenicity ; Phylogeny ; Physiology ; Plastids ; Populations and Evolution ; Proteomics ; Studies ; symbiome ; Symbiosis ; Tansley review ; Terrestrial ecosystems ; trophic interactions ; Vegetal Biology</subject><ispartof>The New phytologist, 2017-11, Vol.216 (3), p.670-681</ispartof><rights>2017 New Phytologist Trust</rights><rights>2017 The Authors. New Phytologist © 2017 New Phytologist Trust</rights><rights>2017 The Authors. New Phytologist © 2017 New Phytologist Trust.</rights><rights>Copyright © 2017 New Phytologist Trust</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5430-3b40b191fb56c9676f6b02c4f1b36ab021f8b8892d04f74a63c215c82f55278b3</citedby><cites>FETCH-LOGICAL-c5430-3b40b191fb56c9676f6b02c4f1b36ab021f8b8892d04f74a63c215c82f55278b3</cites><orcidid>0000-0002-3699-8402 ; 0000-0002-2650-0383 ; 0000-0002-3747-5881 ; 0000-0001-7622-2564 ; 0000-0002-3702-7472</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/90015064$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/90015064$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,780,784,803,885,1416,1432,27923,27924,45573,45574,46408,46832,58016,58249</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28857164$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-01806393$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Brodie, Juliet</creatorcontrib><creatorcontrib>Ball, Steven G.</creatorcontrib><creatorcontrib>Bouget, François‐Yves</creatorcontrib><creatorcontrib>Chan, Cheong Xin</creatorcontrib><creatorcontrib>De Clerck, Olivier</creatorcontrib><creatorcontrib>Cock, J. Mark</creatorcontrib><creatorcontrib>Gachon, Claire</creatorcontrib><creatorcontrib>Grossman, Arthur R.</creatorcontrib><creatorcontrib>Mock, Thomas</creatorcontrib><creatorcontrib>Raven, John A.</creatorcontrib><creatorcontrib>Saha, Mahasweta</creatorcontrib><creatorcontrib>Smith, Alison G.</creatorcontrib><creatorcontrib>Vardi, Assaf</creatorcontrib><creatorcontrib>Yoon, Hwan Su</creatorcontrib><creatorcontrib>Bhattacharya, Debashish</creatorcontrib><title>Biotic interactions as drivers of algal origin and evolution</title><title>The New phytologist</title><addtitle>New Phytol</addtitle><description>Biotic interactions underlie life’s diversity and are the lynchpin to understanding its complexity and resilience within an ecological niche. Algal biologists have embraced this paradigm, and studies building on the explosive growth in omics and cell biology methods have facilitated the in-depth analysis of nonmodel organisms and communities from a variety of ecosystems. In turn, these advances have enabled a major revision of our understanding of the origin and evolution of photosynthesis in eukaryotes, bacterial–algal interactions, control of massive algal blooms in the ocean, and the maintenance and degradation of coral reefs. Here, we review some of the most exciting developments in the field of algal biotic interactions and identify challenges for scientists in the coming years. We foresee the development of an algal knowledgebase that integrates ecosystem-wide omics data and the development of molecular tools/resources to perform functional analyses of individuals in isolation and in populations. These assets will allow us to move beyond mechanistic studies of a single species towards understanding the interactions amongst algae and other organisms in both the laboratory and the field.</description><subject>Algae</subject><subject>algal blooms</subject><subject>Animals</subject><subject>Anthozoa - physiology</subject><subject>Aquatic ecosystems</subject><subject>Aquatic environment</subject><subject>Bacteria</subject><subject>biocenosis</subject><subject>Biodiversity</subject><subject>Biological Evolution</subject><subject>biologists</subject><subject>Biology</subject><subject>Botanics</subject><subject>Chromatophores</subject><subject>Climate change</subject><subject>coral reefs</subject><subject>Cytology</subject><subject>Dinoflagellida - physiology</subject><subject>Ecological function</subject><subject>Ecosystem biology</subject><subject>ecosystems</subject><subject>endosymbiosis</subject><subject>Energy flow</subject><subject>Epibionts</subject><subject>Epibiosis</subject><subject>Eukaryotes</subject><subject>eukaryotic cells</subject><subject>Eutrophication</subject><subject>Evolution</subject><subject>Evolutionary genetics</subject><subject>Functionals</subject><subject>Gene transfer</subject><subject>Genes</subject><subject>Genomes</subject><subject>Genomics</subject><subject>Global climate</subject><subject>Herbivory</subject><subject>holobiont</subject><subject>Horizontal transfer</subject><subject>Host-Pathogen Interactions</subject><subject>Human nutrition</subject><subject>Life Sciences</subject><subject>Marine environment</subject><subject>Marine invertebrates</subject><subject>Metabolic flux</subject><subject>Neighborhoods</subject><subject>niches</subject><subject>Nutrient flow</subject><subject>Nutrition</subject><subject>Organelles</subject><subject>organellogenesis</subject><subject>Organisms</subject><subject>Phaeophyceae - physiology</subject><subject>Photosynthesis</subject><subject>Phycodnaviridae - pathogenicity</subject><subject>Phylogeny</subject><subject>Physiology</subject><subject>Plastids</subject><subject>Populations and Evolution</subject><subject>Proteomics</subject><subject>Studies</subject><subject>symbiome</subject><subject>Symbiosis</subject><subject>Tansley review</subject><subject>Terrestrial ecosystems</subject><subject>trophic interactions</subject><subject>Vegetal Biology</subject><issn>0028-646X</issn><issn>1469-8137</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkUFrFDEUx4NY7Fo9-AGUAS96mPa9JJNkwEst2i0s6kHBW8hkkzbL7GSbzKz025t12xWEYi4vhN_78fL-hLxCOMVyzobNzSlyKeAJmSEXba2QyadkBkBVLbj4eUye57wCgLYR9Bk5pko1EgWfkQ8fQxyDrcIwumTsGOKQK5OrZQpbl3IVfWX6a9NXMYXrMFRmWFZuG_tpR74gR9702b28ryfkx-dP3y_m9eLr5dXF-aK2DWdQs45Dhy36rhG2FVJ40QG13GPHhClX9KpTqqVL4F5yI5il2FhFfdNQqTp2Qt7vvTem15sU1ibd6WiCnp8v9O4NUIFgLdtiYd_t2U2Kt5PLo16HbF3fm8HFKWsKFJRCYOy_KLaMU1UWukPf_oOu4pSG8ulCNVJRKlH-ndOmmHNy_jAsgt4lpUtS-k9ShX1zb5y6tVseyIdoCnC2B36F3t09btJfvs0flK_3Has8xnToaAGwgWL8DRd6or0</recordid><startdate>201711</startdate><enddate>201711</enddate><creator>Brodie, Juliet</creator><creator>Ball, Steven G.</creator><creator>Bouget, François‐Yves</creator><creator>Chan, Cheong Xin</creator><creator>De Clerck, Olivier</creator><creator>Cock, J. Mark</creator><creator>Gachon, Claire</creator><creator>Grossman, Arthur R.</creator><creator>Mock, Thomas</creator><creator>Raven, John A.</creator><creator>Saha, Mahasweta</creator><creator>Smith, Alison G.</creator><creator>Vardi, Assaf</creator><creator>Yoon, Hwan Su</creator><creator>Bhattacharya, Debashish</creator><general>New Phytologist Trust</general><general>Wiley Subscription Services, Inc</general><general>Wiley</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7SN</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H95</scope><scope>L.G</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-3699-8402</orcidid><orcidid>https://orcid.org/0000-0002-2650-0383</orcidid><orcidid>https://orcid.org/0000-0002-3747-5881</orcidid><orcidid>https://orcid.org/0000-0001-7622-2564</orcidid><orcidid>https://orcid.org/0000-0002-3702-7472</orcidid></search><sort><creationdate>201711</creationdate><title>Biotic interactions as drivers of algal origin and evolution</title><author>Brodie, Juliet ; Ball, Steven G. ; Bouget, François‐Yves ; Chan, Cheong Xin ; De Clerck, Olivier ; Cock, J. Mark ; Gachon, Claire ; Grossman, Arthur R. ; Mock, Thomas ; Raven, John A. ; Saha, Mahasweta ; Smith, Alison G. ; Vardi, Assaf ; Yoon, Hwan Su ; Bhattacharya, Debashish</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5430-3b40b191fb56c9676f6b02c4f1b36ab021f8b8892d04f74a63c215c82f55278b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Algae</topic><topic>algal blooms</topic><topic>Animals</topic><topic>Anthozoa - physiology</topic><topic>Aquatic ecosystems</topic><topic>Aquatic environment</topic><topic>Bacteria</topic><topic>biocenosis</topic><topic>Biodiversity</topic><topic>Biological Evolution</topic><topic>biologists</topic><topic>Biology</topic><topic>Botanics</topic><topic>Chromatophores</topic><topic>Climate change</topic><topic>coral reefs</topic><topic>Cytology</topic><topic>Dinoflagellida - physiology</topic><topic>Ecological function</topic><topic>Ecosystem biology</topic><topic>ecosystems</topic><topic>endosymbiosis</topic><topic>Energy flow</topic><topic>Epibionts</topic><topic>Epibiosis</topic><topic>Eukaryotes</topic><topic>eukaryotic cells</topic><topic>Eutrophication</topic><topic>Evolution</topic><topic>Evolutionary genetics</topic><topic>Functionals</topic><topic>Gene transfer</topic><topic>Genes</topic><topic>Genomes</topic><topic>Genomics</topic><topic>Global climate</topic><topic>Herbivory</topic><topic>holobiont</topic><topic>Horizontal transfer</topic><topic>Host-Pathogen Interactions</topic><topic>Human nutrition</topic><topic>Life Sciences</topic><topic>Marine environment</topic><topic>Marine invertebrates</topic><topic>Metabolic flux</topic><topic>Neighborhoods</topic><topic>niches</topic><topic>Nutrient flow</topic><topic>Nutrition</topic><topic>Organelles</topic><topic>organellogenesis</topic><topic>Organisms</topic><topic>Phaeophyceae - physiology</topic><topic>Photosynthesis</topic><topic>Phycodnaviridae - pathogenicity</topic><topic>Phylogeny</topic><topic>Physiology</topic><topic>Plastids</topic><topic>Populations and Evolution</topic><topic>Proteomics</topic><topic>Studies</topic><topic>symbiome</topic><topic>Symbiosis</topic><topic>Tansley review</topic><topic>Terrestrial ecosystems</topic><topic>trophic interactions</topic><topic>Vegetal Biology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Brodie, Juliet</creatorcontrib><creatorcontrib>Ball, Steven G.</creatorcontrib><creatorcontrib>Bouget, François‐Yves</creatorcontrib><creatorcontrib>Chan, Cheong Xin</creatorcontrib><creatorcontrib>De Clerck, Olivier</creatorcontrib><creatorcontrib>Cock, J. Mark</creatorcontrib><creatorcontrib>Gachon, Claire</creatorcontrib><creatorcontrib>Grossman, Arthur R.</creatorcontrib><creatorcontrib>Mock, Thomas</creatorcontrib><creatorcontrib>Raven, John A.</creatorcontrib><creatorcontrib>Saha, Mahasweta</creatorcontrib><creatorcontrib>Smith, Alison G.</creatorcontrib><creatorcontrib>Vardi, Assaf</creatorcontrib><creatorcontrib>Yoon, Hwan Su</creatorcontrib><creatorcontrib>Bhattacharya, Debashish</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Ecology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 1: Biological Sciences &amp; Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>The New phytologist</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Brodie, Juliet</au><au>Ball, Steven G.</au><au>Bouget, François‐Yves</au><au>Chan, Cheong Xin</au><au>De Clerck, Olivier</au><au>Cock, J. Mark</au><au>Gachon, Claire</au><au>Grossman, Arthur R.</au><au>Mock, Thomas</au><au>Raven, John A.</au><au>Saha, Mahasweta</au><au>Smith, Alison G.</au><au>Vardi, Assaf</au><au>Yoon, Hwan Su</au><au>Bhattacharya, Debashish</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Biotic interactions as drivers of algal origin and evolution</atitle><jtitle>The New phytologist</jtitle><addtitle>New Phytol</addtitle><date>2017-11</date><risdate>2017</risdate><volume>216</volume><issue>3</issue><spage>670</spage><epage>681</epage><pages>670-681</pages><issn>0028-646X</issn><eissn>1469-8137</eissn><abstract>Biotic interactions underlie life’s diversity and are the lynchpin to understanding its complexity and resilience within an ecological niche. Algal biologists have embraced this paradigm, and studies building on the explosive growth in omics and cell biology methods have facilitated the in-depth analysis of nonmodel organisms and communities from a variety of ecosystems. In turn, these advances have enabled a major revision of our understanding of the origin and evolution of photosynthesis in eukaryotes, bacterial–algal interactions, control of massive algal blooms in the ocean, and the maintenance and degradation of coral reefs. Here, we review some of the most exciting developments in the field of algal biotic interactions and identify challenges for scientists in the coming years. We foresee the development of an algal knowledgebase that integrates ecosystem-wide omics data and the development of molecular tools/resources to perform functional analyses of individuals in isolation and in populations. These assets will allow us to move beyond mechanistic studies of a single species towards understanding the interactions amongst algae and other organisms in both the laboratory and the field.</abstract><cop>England</cop><pub>New Phytologist Trust</pub><pmid>28857164</pmid><doi>10.1111/nph.14760</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-3699-8402</orcidid><orcidid>https://orcid.org/0000-0002-2650-0383</orcidid><orcidid>https://orcid.org/0000-0002-3747-5881</orcidid><orcidid>https://orcid.org/0000-0001-7622-2564</orcidid><orcidid>https://orcid.org/0000-0002-3702-7472</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0028-646X
ispartof The New phytologist, 2017-11, Vol.216 (3), p.670-681
issn 0028-646X
1469-8137
language eng
recordid cdi_hal_primary_oai_HAL_hal_01806393v1
source MEDLINE; JSTOR Archive Collection A-Z Listing; Wiley Free Content; EZB-FREE-00999 freely available EZB journals; Wiley Online Library All Journals
subjects Algae
algal blooms
Animals
Anthozoa - physiology
Aquatic ecosystems
Aquatic environment
Bacteria
biocenosis
Biodiversity
Biological Evolution
biologists
Biology
Botanics
Chromatophores
Climate change
coral reefs
Cytology
Dinoflagellida - physiology
Ecological function
Ecosystem biology
ecosystems
endosymbiosis
Energy flow
Epibionts
Epibiosis
Eukaryotes
eukaryotic cells
Eutrophication
Evolution
Evolutionary genetics
Functionals
Gene transfer
Genes
Genomes
Genomics
Global climate
Herbivory
holobiont
Horizontal transfer
Host-Pathogen Interactions
Human nutrition
Life Sciences
Marine environment
Marine invertebrates
Metabolic flux
Neighborhoods
niches
Nutrient flow
Nutrition
Organelles
organellogenesis
Organisms
Phaeophyceae - physiology
Photosynthesis
Phycodnaviridae - pathogenicity
Phylogeny
Physiology
Plastids
Populations and Evolution
Proteomics
Studies
symbiome
Symbiosis
Tansley review
Terrestrial ecosystems
trophic interactions
Vegetal Biology
title Biotic interactions as drivers of algal origin and evolution
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T04%3A56%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Biotic%20interactions%20as%20drivers%20of%20algal%20origin%20and%20evolution&rft.jtitle=The%20New%20phytologist&rft.au=Brodie,%20Juliet&rft.date=2017-11&rft.volume=216&rft.issue=3&rft.spage=670&rft.epage=681&rft.pages=670-681&rft.issn=0028-646X&rft.eissn=1469-8137&rft_id=info:doi/10.1111/nph.14760&rft_dat=%3Cjstor_hal_p%3E90015064%3C/jstor_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1957822717&rft_id=info:pmid/28857164&rft_jstor_id=90015064&rfr_iscdi=true