Biotic interactions as drivers of algal origin and evolution
Biotic interactions underlie life’s diversity and are the lynchpin to understanding its complexity and resilience within an ecological niche. Algal biologists have embraced this paradigm, and studies building on the explosive growth in omics and cell biology methods have facilitated the in-depth ana...
Gespeichert in:
Veröffentlicht in: | The New phytologist 2017-11, Vol.216 (3), p.670-681 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 681 |
---|---|
container_issue | 3 |
container_start_page | 670 |
container_title | The New phytologist |
container_volume | 216 |
creator | Brodie, Juliet Ball, Steven G. Bouget, François‐Yves Chan, Cheong Xin De Clerck, Olivier Cock, J. Mark Gachon, Claire Grossman, Arthur R. Mock, Thomas Raven, John A. Saha, Mahasweta Smith, Alison G. Vardi, Assaf Yoon, Hwan Su Bhattacharya, Debashish |
description | Biotic interactions underlie life’s diversity and are the lynchpin to understanding its complexity and resilience within an ecological niche. Algal biologists have embraced this paradigm, and studies building on the explosive growth in omics and cell biology methods have facilitated the in-depth analysis of nonmodel organisms and communities from a variety of ecosystems. In turn, these advances have enabled a major revision of our understanding of the origin and evolution of photosynthesis in eukaryotes, bacterial–algal interactions, control of massive algal blooms in the ocean, and the maintenance and degradation of coral reefs. Here, we review some of the most exciting developments in the field of algal biotic interactions and identify challenges for scientists in the coming years. We foresee the development of an algal knowledgebase that integrates ecosystem-wide omics data and the development of molecular tools/resources to perform functional analyses of individuals in isolation and in populations. These assets will allow us to move beyond mechanistic studies of a single species towards understanding the interactions amongst algae and other organisms in both the laboratory and the field. |
doi_str_mv | 10.1111/nph.14760 |
format | Article |
fullrecord | <record><control><sourceid>jstor_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01806393v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>90015064</jstor_id><sourcerecordid>90015064</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5430-3b40b191fb56c9676f6b02c4f1b36ab021f8b8892d04f74a63c215c82f55278b3</originalsourceid><addsrcrecordid>eNqFkUFrFDEUx4NY7Fo9-AGUAS96mPa9JJNkwEst2i0s6kHBW8hkkzbL7GSbzKz025t12xWEYi4vhN_78fL-hLxCOMVyzobNzSlyKeAJmSEXba2QyadkBkBVLbj4eUye57wCgLYR9Bk5pko1EgWfkQ8fQxyDrcIwumTsGOKQK5OrZQpbl3IVfWX6a9NXMYXrMFRmWFZuG_tpR74gR9702b28ryfkx-dP3y_m9eLr5dXF-aK2DWdQs45Dhy36rhG2FVJ40QG13GPHhClX9KpTqqVL4F5yI5il2FhFfdNQqTp2Qt7vvTem15sU1ibd6WiCnp8v9O4NUIFgLdtiYd_t2U2Kt5PLo16HbF3fm8HFKWsKFJRCYOy_KLaMU1UWukPf_oOu4pSG8ulCNVJRKlH-ndOmmHNy_jAsgt4lpUtS-k9ShX1zb5y6tVseyIdoCnC2B36F3t09btJfvs0flK_3Has8xnToaAGwgWL8DRd6or0</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1957822717</pqid></control><display><type>article</type><title>Biotic interactions as drivers of algal origin and evolution</title><source>MEDLINE</source><source>JSTOR Archive Collection A-Z Listing</source><source>Wiley Free Content</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Wiley Online Library All Journals</source><creator>Brodie, Juliet ; Ball, Steven G. ; Bouget, François‐Yves ; Chan, Cheong Xin ; De Clerck, Olivier ; Cock, J. Mark ; Gachon, Claire ; Grossman, Arthur R. ; Mock, Thomas ; Raven, John A. ; Saha, Mahasweta ; Smith, Alison G. ; Vardi, Assaf ; Yoon, Hwan Su ; Bhattacharya, Debashish</creator><creatorcontrib>Brodie, Juliet ; Ball, Steven G. ; Bouget, François‐Yves ; Chan, Cheong Xin ; De Clerck, Olivier ; Cock, J. Mark ; Gachon, Claire ; Grossman, Arthur R. ; Mock, Thomas ; Raven, John A. ; Saha, Mahasweta ; Smith, Alison G. ; Vardi, Assaf ; Yoon, Hwan Su ; Bhattacharya, Debashish</creatorcontrib><description>Biotic interactions underlie life’s diversity and are the lynchpin to understanding its complexity and resilience within an ecological niche. Algal biologists have embraced this paradigm, and studies building on the explosive growth in omics and cell biology methods have facilitated the in-depth analysis of nonmodel organisms and communities from a variety of ecosystems. In turn, these advances have enabled a major revision of our understanding of the origin and evolution of photosynthesis in eukaryotes, bacterial–algal interactions, control of massive algal blooms in the ocean, and the maintenance and degradation of coral reefs. Here, we review some of the most exciting developments in the field of algal biotic interactions and identify challenges for scientists in the coming years. We foresee the development of an algal knowledgebase that integrates ecosystem-wide omics data and the development of molecular tools/resources to perform functional analyses of individuals in isolation and in populations. These assets will allow us to move beyond mechanistic studies of a single species towards understanding the interactions amongst algae and other organisms in both the laboratory and the field.</description><identifier>ISSN: 0028-646X</identifier><identifier>EISSN: 1469-8137</identifier><identifier>DOI: 10.1111/nph.14760</identifier><identifier>PMID: 28857164</identifier><language>eng</language><publisher>England: New Phytologist Trust</publisher><subject>Algae ; algal blooms ; Animals ; Anthozoa - physiology ; Aquatic ecosystems ; Aquatic environment ; Bacteria ; biocenosis ; Biodiversity ; Biological Evolution ; biologists ; Biology ; Botanics ; Chromatophores ; Climate change ; coral reefs ; Cytology ; Dinoflagellida - physiology ; Ecological function ; Ecosystem biology ; ecosystems ; endosymbiosis ; Energy flow ; Epibionts ; Epibiosis ; Eukaryotes ; eukaryotic cells ; Eutrophication ; Evolution ; Evolutionary genetics ; Functionals ; Gene transfer ; Genes ; Genomes ; Genomics ; Global climate ; Herbivory ; holobiont ; Horizontal transfer ; Host-Pathogen Interactions ; Human nutrition ; Life Sciences ; Marine environment ; Marine invertebrates ; Metabolic flux ; Neighborhoods ; niches ; Nutrient flow ; Nutrition ; Organelles ; organellogenesis ; Organisms ; Phaeophyceae - physiology ; Photosynthesis ; Phycodnaviridae - pathogenicity ; Phylogeny ; Physiology ; Plastids ; Populations and Evolution ; Proteomics ; Studies ; symbiome ; Symbiosis ; Tansley review ; Terrestrial ecosystems ; trophic interactions ; Vegetal Biology</subject><ispartof>The New phytologist, 2017-11, Vol.216 (3), p.670-681</ispartof><rights>2017 New Phytologist Trust</rights><rights>2017 The Authors. New Phytologist © 2017 New Phytologist Trust</rights><rights>2017 The Authors. New Phytologist © 2017 New Phytologist Trust.</rights><rights>Copyright © 2017 New Phytologist Trust</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5430-3b40b191fb56c9676f6b02c4f1b36ab021f8b8892d04f74a63c215c82f55278b3</citedby><cites>FETCH-LOGICAL-c5430-3b40b191fb56c9676f6b02c4f1b36ab021f8b8892d04f74a63c215c82f55278b3</cites><orcidid>0000-0002-3699-8402 ; 0000-0002-2650-0383 ; 0000-0002-3747-5881 ; 0000-0001-7622-2564 ; 0000-0002-3702-7472</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/90015064$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/90015064$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,780,784,803,885,1416,1432,27923,27924,45573,45574,46408,46832,58016,58249</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28857164$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-01806393$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Brodie, Juliet</creatorcontrib><creatorcontrib>Ball, Steven G.</creatorcontrib><creatorcontrib>Bouget, François‐Yves</creatorcontrib><creatorcontrib>Chan, Cheong Xin</creatorcontrib><creatorcontrib>De Clerck, Olivier</creatorcontrib><creatorcontrib>Cock, J. Mark</creatorcontrib><creatorcontrib>Gachon, Claire</creatorcontrib><creatorcontrib>Grossman, Arthur R.</creatorcontrib><creatorcontrib>Mock, Thomas</creatorcontrib><creatorcontrib>Raven, John A.</creatorcontrib><creatorcontrib>Saha, Mahasweta</creatorcontrib><creatorcontrib>Smith, Alison G.</creatorcontrib><creatorcontrib>Vardi, Assaf</creatorcontrib><creatorcontrib>Yoon, Hwan Su</creatorcontrib><creatorcontrib>Bhattacharya, Debashish</creatorcontrib><title>Biotic interactions as drivers of algal origin and evolution</title><title>The New phytologist</title><addtitle>New Phytol</addtitle><description>Biotic interactions underlie life’s diversity and are the lynchpin to understanding its complexity and resilience within an ecological niche. Algal biologists have embraced this paradigm, and studies building on the explosive growth in omics and cell biology methods have facilitated the in-depth analysis of nonmodel organisms and communities from a variety of ecosystems. In turn, these advances have enabled a major revision of our understanding of the origin and evolution of photosynthesis in eukaryotes, bacterial–algal interactions, control of massive algal blooms in the ocean, and the maintenance and degradation of coral reefs. Here, we review some of the most exciting developments in the field of algal biotic interactions and identify challenges for scientists in the coming years. We foresee the development of an algal knowledgebase that integrates ecosystem-wide omics data and the development of molecular tools/resources to perform functional analyses of individuals in isolation and in populations. These assets will allow us to move beyond mechanistic studies of a single species towards understanding the interactions amongst algae and other organisms in both the laboratory and the field.</description><subject>Algae</subject><subject>algal blooms</subject><subject>Animals</subject><subject>Anthozoa - physiology</subject><subject>Aquatic ecosystems</subject><subject>Aquatic environment</subject><subject>Bacteria</subject><subject>biocenosis</subject><subject>Biodiversity</subject><subject>Biological Evolution</subject><subject>biologists</subject><subject>Biology</subject><subject>Botanics</subject><subject>Chromatophores</subject><subject>Climate change</subject><subject>coral reefs</subject><subject>Cytology</subject><subject>Dinoflagellida - physiology</subject><subject>Ecological function</subject><subject>Ecosystem biology</subject><subject>ecosystems</subject><subject>endosymbiosis</subject><subject>Energy flow</subject><subject>Epibionts</subject><subject>Epibiosis</subject><subject>Eukaryotes</subject><subject>eukaryotic cells</subject><subject>Eutrophication</subject><subject>Evolution</subject><subject>Evolutionary genetics</subject><subject>Functionals</subject><subject>Gene transfer</subject><subject>Genes</subject><subject>Genomes</subject><subject>Genomics</subject><subject>Global climate</subject><subject>Herbivory</subject><subject>holobiont</subject><subject>Horizontal transfer</subject><subject>Host-Pathogen Interactions</subject><subject>Human nutrition</subject><subject>Life Sciences</subject><subject>Marine environment</subject><subject>Marine invertebrates</subject><subject>Metabolic flux</subject><subject>Neighborhoods</subject><subject>niches</subject><subject>Nutrient flow</subject><subject>Nutrition</subject><subject>Organelles</subject><subject>organellogenesis</subject><subject>Organisms</subject><subject>Phaeophyceae - physiology</subject><subject>Photosynthesis</subject><subject>Phycodnaviridae - pathogenicity</subject><subject>Phylogeny</subject><subject>Physiology</subject><subject>Plastids</subject><subject>Populations and Evolution</subject><subject>Proteomics</subject><subject>Studies</subject><subject>symbiome</subject><subject>Symbiosis</subject><subject>Tansley review</subject><subject>Terrestrial ecosystems</subject><subject>trophic interactions</subject><subject>Vegetal Biology</subject><issn>0028-646X</issn><issn>1469-8137</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkUFrFDEUx4NY7Fo9-AGUAS96mPa9JJNkwEst2i0s6kHBW8hkkzbL7GSbzKz025t12xWEYi4vhN_78fL-hLxCOMVyzobNzSlyKeAJmSEXba2QyadkBkBVLbj4eUye57wCgLYR9Bk5pko1EgWfkQ8fQxyDrcIwumTsGOKQK5OrZQpbl3IVfWX6a9NXMYXrMFRmWFZuG_tpR74gR9702b28ryfkx-dP3y_m9eLr5dXF-aK2DWdQs45Dhy36rhG2FVJ40QG13GPHhClX9KpTqqVL4F5yI5il2FhFfdNQqTp2Qt7vvTem15sU1ibd6WiCnp8v9O4NUIFgLdtiYd_t2U2Kt5PLo16HbF3fm8HFKWsKFJRCYOy_KLaMU1UWukPf_oOu4pSG8ulCNVJRKlH-ndOmmHNy_jAsgt4lpUtS-k9ShX1zb5y6tVseyIdoCnC2B36F3t09btJfvs0flK_3Has8xnToaAGwgWL8DRd6or0</recordid><startdate>201711</startdate><enddate>201711</enddate><creator>Brodie, Juliet</creator><creator>Ball, Steven G.</creator><creator>Bouget, François‐Yves</creator><creator>Chan, Cheong Xin</creator><creator>De Clerck, Olivier</creator><creator>Cock, J. Mark</creator><creator>Gachon, Claire</creator><creator>Grossman, Arthur R.</creator><creator>Mock, Thomas</creator><creator>Raven, John A.</creator><creator>Saha, Mahasweta</creator><creator>Smith, Alison G.</creator><creator>Vardi, Assaf</creator><creator>Yoon, Hwan Su</creator><creator>Bhattacharya, Debashish</creator><general>New Phytologist Trust</general><general>Wiley Subscription Services, Inc</general><general>Wiley</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7SN</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H95</scope><scope>L.G</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-3699-8402</orcidid><orcidid>https://orcid.org/0000-0002-2650-0383</orcidid><orcidid>https://orcid.org/0000-0002-3747-5881</orcidid><orcidid>https://orcid.org/0000-0001-7622-2564</orcidid><orcidid>https://orcid.org/0000-0002-3702-7472</orcidid></search><sort><creationdate>201711</creationdate><title>Biotic interactions as drivers of algal origin and evolution</title><author>Brodie, Juliet ; Ball, Steven G. ; Bouget, François‐Yves ; Chan, Cheong Xin ; De Clerck, Olivier ; Cock, J. Mark ; Gachon, Claire ; Grossman, Arthur R. ; Mock, Thomas ; Raven, John A. ; Saha, Mahasweta ; Smith, Alison G. ; Vardi, Assaf ; Yoon, Hwan Su ; Bhattacharya, Debashish</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5430-3b40b191fb56c9676f6b02c4f1b36ab021f8b8892d04f74a63c215c82f55278b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Algae</topic><topic>algal blooms</topic><topic>Animals</topic><topic>Anthozoa - physiology</topic><topic>Aquatic ecosystems</topic><topic>Aquatic environment</topic><topic>Bacteria</topic><topic>biocenosis</topic><topic>Biodiversity</topic><topic>Biological Evolution</topic><topic>biologists</topic><topic>Biology</topic><topic>Botanics</topic><topic>Chromatophores</topic><topic>Climate change</topic><topic>coral reefs</topic><topic>Cytology</topic><topic>Dinoflagellida - physiology</topic><topic>Ecological function</topic><topic>Ecosystem biology</topic><topic>ecosystems</topic><topic>endosymbiosis</topic><topic>Energy flow</topic><topic>Epibionts</topic><topic>Epibiosis</topic><topic>Eukaryotes</topic><topic>eukaryotic cells</topic><topic>Eutrophication</topic><topic>Evolution</topic><topic>Evolutionary genetics</topic><topic>Functionals</topic><topic>Gene transfer</topic><topic>Genes</topic><topic>Genomes</topic><topic>Genomics</topic><topic>Global climate</topic><topic>Herbivory</topic><topic>holobiont</topic><topic>Horizontal transfer</topic><topic>Host-Pathogen Interactions</topic><topic>Human nutrition</topic><topic>Life Sciences</topic><topic>Marine environment</topic><topic>Marine invertebrates</topic><topic>Metabolic flux</topic><topic>Neighborhoods</topic><topic>niches</topic><topic>Nutrient flow</topic><topic>Nutrition</topic><topic>Organelles</topic><topic>organellogenesis</topic><topic>Organisms</topic><topic>Phaeophyceae - physiology</topic><topic>Photosynthesis</topic><topic>Phycodnaviridae - pathogenicity</topic><topic>Phylogeny</topic><topic>Physiology</topic><topic>Plastids</topic><topic>Populations and Evolution</topic><topic>Proteomics</topic><topic>Studies</topic><topic>symbiome</topic><topic>Symbiosis</topic><topic>Tansley review</topic><topic>Terrestrial ecosystems</topic><topic>trophic interactions</topic><topic>Vegetal Biology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Brodie, Juliet</creatorcontrib><creatorcontrib>Ball, Steven G.</creatorcontrib><creatorcontrib>Bouget, François‐Yves</creatorcontrib><creatorcontrib>Chan, Cheong Xin</creatorcontrib><creatorcontrib>De Clerck, Olivier</creatorcontrib><creatorcontrib>Cock, J. Mark</creatorcontrib><creatorcontrib>Gachon, Claire</creatorcontrib><creatorcontrib>Grossman, Arthur R.</creatorcontrib><creatorcontrib>Mock, Thomas</creatorcontrib><creatorcontrib>Raven, John A.</creatorcontrib><creatorcontrib>Saha, Mahasweta</creatorcontrib><creatorcontrib>Smith, Alison G.</creatorcontrib><creatorcontrib>Vardi, Assaf</creatorcontrib><creatorcontrib>Yoon, Hwan Su</creatorcontrib><creatorcontrib>Bhattacharya, Debashish</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Ecology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>The New phytologist</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Brodie, Juliet</au><au>Ball, Steven G.</au><au>Bouget, François‐Yves</au><au>Chan, Cheong Xin</au><au>De Clerck, Olivier</au><au>Cock, J. Mark</au><au>Gachon, Claire</au><au>Grossman, Arthur R.</au><au>Mock, Thomas</au><au>Raven, John A.</au><au>Saha, Mahasweta</au><au>Smith, Alison G.</au><au>Vardi, Assaf</au><au>Yoon, Hwan Su</au><au>Bhattacharya, Debashish</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Biotic interactions as drivers of algal origin and evolution</atitle><jtitle>The New phytologist</jtitle><addtitle>New Phytol</addtitle><date>2017-11</date><risdate>2017</risdate><volume>216</volume><issue>3</issue><spage>670</spage><epage>681</epage><pages>670-681</pages><issn>0028-646X</issn><eissn>1469-8137</eissn><abstract>Biotic interactions underlie life’s diversity and are the lynchpin to understanding its complexity and resilience within an ecological niche. Algal biologists have embraced this paradigm, and studies building on the explosive growth in omics and cell biology methods have facilitated the in-depth analysis of nonmodel organisms and communities from a variety of ecosystems. In turn, these advances have enabled a major revision of our understanding of the origin and evolution of photosynthesis in eukaryotes, bacterial–algal interactions, control of massive algal blooms in the ocean, and the maintenance and degradation of coral reefs. Here, we review some of the most exciting developments in the field of algal biotic interactions and identify challenges for scientists in the coming years. We foresee the development of an algal knowledgebase that integrates ecosystem-wide omics data and the development of molecular tools/resources to perform functional analyses of individuals in isolation and in populations. These assets will allow us to move beyond mechanistic studies of a single species towards understanding the interactions amongst algae and other organisms in both the laboratory and the field.</abstract><cop>England</cop><pub>New Phytologist Trust</pub><pmid>28857164</pmid><doi>10.1111/nph.14760</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-3699-8402</orcidid><orcidid>https://orcid.org/0000-0002-2650-0383</orcidid><orcidid>https://orcid.org/0000-0002-3747-5881</orcidid><orcidid>https://orcid.org/0000-0001-7622-2564</orcidid><orcidid>https://orcid.org/0000-0002-3702-7472</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0028-646X |
ispartof | The New phytologist, 2017-11, Vol.216 (3), p.670-681 |
issn | 0028-646X 1469-8137 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_01806393v1 |
source | MEDLINE; JSTOR Archive Collection A-Z Listing; Wiley Free Content; EZB-FREE-00999 freely available EZB journals; Wiley Online Library All Journals |
subjects | Algae algal blooms Animals Anthozoa - physiology Aquatic ecosystems Aquatic environment Bacteria biocenosis Biodiversity Biological Evolution biologists Biology Botanics Chromatophores Climate change coral reefs Cytology Dinoflagellida - physiology Ecological function Ecosystem biology ecosystems endosymbiosis Energy flow Epibionts Epibiosis Eukaryotes eukaryotic cells Eutrophication Evolution Evolutionary genetics Functionals Gene transfer Genes Genomes Genomics Global climate Herbivory holobiont Horizontal transfer Host-Pathogen Interactions Human nutrition Life Sciences Marine environment Marine invertebrates Metabolic flux Neighborhoods niches Nutrient flow Nutrition Organelles organellogenesis Organisms Phaeophyceae - physiology Photosynthesis Phycodnaviridae - pathogenicity Phylogeny Physiology Plastids Populations and Evolution Proteomics Studies symbiome Symbiosis Tansley review Terrestrial ecosystems trophic interactions Vegetal Biology |
title | Biotic interactions as drivers of algal origin and evolution |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T04%3A56%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Biotic%20interactions%20as%20drivers%20of%20algal%20origin%20and%20evolution&rft.jtitle=The%20New%20phytologist&rft.au=Brodie,%20Juliet&rft.date=2017-11&rft.volume=216&rft.issue=3&rft.spage=670&rft.epage=681&rft.pages=670-681&rft.issn=0028-646X&rft.eissn=1469-8137&rft_id=info:doi/10.1111/nph.14760&rft_dat=%3Cjstor_hal_p%3E90015064%3C/jstor_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1957822717&rft_id=info:pmid/28857164&rft_jstor_id=90015064&rfr_iscdi=true |