Influence of strain rate and temperature on the onset of strain induced crystallization in natural rubber

[Display omitted] •SIC of NR is investigated thanks to thermal and mechanical analysis.•The stretching ratio at SIC onset increases when the strain rate increases.•The optimum temperature for SIC increases with the strain rate.•A thermodynamic approach provides a good estimate of the experimental da...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:European polymer journal 2015-03, Vol.64, p.244-252
Hauptverfasser: Candau, Nicolas, Laghmach, Rabia, Chazeau, Laurent, Chenal, Jean-Marc, Gauthier, Catherine, Biben, Thierry, Munch, Etienne
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 252
container_issue
container_start_page 244
container_title European polymer journal
container_volume 64
creator Candau, Nicolas
Laghmach, Rabia
Chazeau, Laurent
Chenal, Jean-Marc
Gauthier, Catherine
Biben, Thierry
Munch, Etienne
description [Display omitted] •SIC of NR is investigated thanks to thermal and mechanical analysis.•The stretching ratio at SIC onset increases when the strain rate increases.•The optimum temperature for SIC increases with the strain rate.•A thermodynamic approach provides a good estimate of the experimental data.•Both diffusion and nucleation times are taken into account in the model. Strain induced crystallization (SIC) of natural rubber (NR) has been studied in a large range of strain rate (from 5.6×10−5s−1 to 2.8×101s−1) and temperature (from −40°C to 80°C) combining mechanical and thermal analysis. Both methods are used to extend the study of SIC from slow strain rates – performed with in situ wide angle X-rays scattering (WAXS) – to high strain rates. Whatever the temperature tested, the stretching ratio at crystallization onset (λc) increases when the strain rate increases. This strain rate effect is strong at low temperature (close to Tg) and weak at high temperature (much higher than Tg). A theoretical approach derived from the Hoffman–Lauritzen equation has been developed and provides a good qualitative description of the experimental results. At low temperature, the strong increase of λc with strain rate is explained by a too long diffusion time compared to the experimental time. At high temperature, SIC kinetics is rather controlled by the nucleation barrier which mainly depends on the strain energy. When the stretching ratio increases, this nucleation barrier strongly decreases, allowing crystallization even for short experimental time.
doi_str_mv 10.1016/j.eurpolymj.2015.01.008
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01804729v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0014305715000208</els_id><sourcerecordid>1677991855</sourcerecordid><originalsourceid>FETCH-LOGICAL-c497t-cbd8df360cb258cdfdb5f3ce0fff203e3f3b1f1b45e759e61563ab8a8cc064333</originalsourceid><addsrcrecordid>eNqFkU1LxDAQhoMouH78BnPUQ-tk0zTtcRG_YMGLnkOaTDBLtl2TVFh_vS0r4s3TMJPnfYfMS8gVg5IBq283JY5xN4T9dlMugYkSWAnQHJEFayQvWFuJY7IAYFXBQchTcpbSBgAkr_mC-OfehRF7g3RwNOWofU-jzkh1b2nG7Q6nbozTc0_z-1wS5j-s7-1o0FIT9ynrEPyXzn6Y57SfhTrQOHYdxgty4nRIePlTz8nbw_3r3VOxfnl8vlutC1O1Mhems411vAbTLUVjrLOdcNwgOOeWwJE73jHHukqgFC3WTNRcd41ujIG64pyfk5uD77sOahf9Vse9GrRXT6u1mmfAGqjksv1kE3t9YHdx-BgxZbX1yWAIusdhTIrVUrYta4SYUHlATRxSiuh-vRmoOQi1Ub9BqDmIaZGagpiUq4MSp19_eowqGT9f3PqIJis7-H89vgElLph8</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1677991855</pqid></control><display><type>article</type><title>Influence of strain rate and temperature on the onset of strain induced crystallization in natural rubber</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Candau, Nicolas ; Laghmach, Rabia ; Chazeau, Laurent ; Chenal, Jean-Marc ; Gauthier, Catherine ; Biben, Thierry ; Munch, Etienne</creator><creatorcontrib>Candau, Nicolas ; Laghmach, Rabia ; Chazeau, Laurent ; Chenal, Jean-Marc ; Gauthier, Catherine ; Biben, Thierry ; Munch, Etienne</creatorcontrib><description>[Display omitted] •SIC of NR is investigated thanks to thermal and mechanical analysis.•The stretching ratio at SIC onset increases when the strain rate increases.•The optimum temperature for SIC increases with the strain rate.•A thermodynamic approach provides a good estimate of the experimental data.•Both diffusion and nucleation times are taken into account in the model. Strain induced crystallization (SIC) of natural rubber (NR) has been studied in a large range of strain rate (from 5.6×10−5s−1 to 2.8×101s−1) and temperature (from −40°C to 80°C) combining mechanical and thermal analysis. Both methods are used to extend the study of SIC from slow strain rates – performed with in situ wide angle X-rays scattering (WAXS) – to high strain rates. Whatever the temperature tested, the stretching ratio at crystallization onset (λc) increases when the strain rate increases. This strain rate effect is strong at low temperature (close to Tg) and weak at high temperature (much higher than Tg). A theoretical approach derived from the Hoffman–Lauritzen equation has been developed and provides a good qualitative description of the experimental results. At low temperature, the strong increase of λc with strain rate is explained by a too long diffusion time compared to the experimental time. At high temperature, SIC kinetics is rather controlled by the nucleation barrier which mainly depends on the strain energy. When the stretching ratio increases, this nucleation barrier strongly decreases, allowing crystallization even for short experimental time.</description><identifier>ISSN: 0014-3057</identifier><identifier>EISSN: 1873-1945</identifier><identifier>DOI: 10.1016/j.eurpolymj.2015.01.008</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Barriers ; Crystallization ; Engineering Sciences ; In situ WAXS ; Kinetics ; Materials ; Mathematical analysis ; Natural rubber ; Nucleation ; Slow strain rate ; Strain ; Strain induced crystallization ; Strain rate ; Stretching</subject><ispartof>European polymer journal, 2015-03, Vol.64, p.244-252</ispartof><rights>2015 Elsevier Ltd</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c497t-cbd8df360cb258cdfdb5f3ce0fff203e3f3b1f1b45e759e61563ab8a8cc064333</citedby><cites>FETCH-LOGICAL-c497t-cbd8df360cb258cdfdb5f3ce0fff203e3f3b1f1b45e759e61563ab8a8cc064333</cites><orcidid>0000-0002-9447-1780</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.eurpolymj.2015.01.008$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3548,27923,27924,45994</link.rule.ids><backlink>$$Uhttps://hal.science/hal-01804729$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Candau, Nicolas</creatorcontrib><creatorcontrib>Laghmach, Rabia</creatorcontrib><creatorcontrib>Chazeau, Laurent</creatorcontrib><creatorcontrib>Chenal, Jean-Marc</creatorcontrib><creatorcontrib>Gauthier, Catherine</creatorcontrib><creatorcontrib>Biben, Thierry</creatorcontrib><creatorcontrib>Munch, Etienne</creatorcontrib><title>Influence of strain rate and temperature on the onset of strain induced crystallization in natural rubber</title><title>European polymer journal</title><description>[Display omitted] •SIC of NR is investigated thanks to thermal and mechanical analysis.•The stretching ratio at SIC onset increases when the strain rate increases.•The optimum temperature for SIC increases with the strain rate.•A thermodynamic approach provides a good estimate of the experimental data.•Both diffusion and nucleation times are taken into account in the model. Strain induced crystallization (SIC) of natural rubber (NR) has been studied in a large range of strain rate (from 5.6×10−5s−1 to 2.8×101s−1) and temperature (from −40°C to 80°C) combining mechanical and thermal analysis. Both methods are used to extend the study of SIC from slow strain rates – performed with in situ wide angle X-rays scattering (WAXS) – to high strain rates. Whatever the temperature tested, the stretching ratio at crystallization onset (λc) increases when the strain rate increases. This strain rate effect is strong at low temperature (close to Tg) and weak at high temperature (much higher than Tg). A theoretical approach derived from the Hoffman–Lauritzen equation has been developed and provides a good qualitative description of the experimental results. At low temperature, the strong increase of λc with strain rate is explained by a too long diffusion time compared to the experimental time. At high temperature, SIC kinetics is rather controlled by the nucleation barrier which mainly depends on the strain energy. When the stretching ratio increases, this nucleation barrier strongly decreases, allowing crystallization even for short experimental time.</description><subject>Barriers</subject><subject>Crystallization</subject><subject>Engineering Sciences</subject><subject>In situ WAXS</subject><subject>Kinetics</subject><subject>Materials</subject><subject>Mathematical analysis</subject><subject>Natural rubber</subject><subject>Nucleation</subject><subject>Slow strain rate</subject><subject>Strain</subject><subject>Strain induced crystallization</subject><subject>Strain rate</subject><subject>Stretching</subject><issn>0014-3057</issn><issn>1873-1945</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqFkU1LxDAQhoMouH78BnPUQ-tk0zTtcRG_YMGLnkOaTDBLtl2TVFh_vS0r4s3TMJPnfYfMS8gVg5IBq283JY5xN4T9dlMugYkSWAnQHJEFayQvWFuJY7IAYFXBQchTcpbSBgAkr_mC-OfehRF7g3RwNOWofU-jzkh1b2nG7Q6nbozTc0_z-1wS5j-s7-1o0FIT9ynrEPyXzn6Y57SfhTrQOHYdxgty4nRIePlTz8nbw_3r3VOxfnl8vlutC1O1Mhems411vAbTLUVjrLOdcNwgOOeWwJE73jHHukqgFC3WTNRcd41ujIG64pyfk5uD77sOahf9Vse9GrRXT6u1mmfAGqjksv1kE3t9YHdx-BgxZbX1yWAIusdhTIrVUrYta4SYUHlATRxSiuh-vRmoOQi1Ub9BqDmIaZGagpiUq4MSp19_eowqGT9f3PqIJis7-H89vgElLph8</recordid><startdate>20150301</startdate><enddate>20150301</enddate><creator>Candau, Nicolas</creator><creator>Laghmach, Rabia</creator><creator>Chazeau, Laurent</creator><creator>Chenal, Jean-Marc</creator><creator>Gauthier, Catherine</creator><creator>Biben, Thierry</creator><creator>Munch, Etienne</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-9447-1780</orcidid></search><sort><creationdate>20150301</creationdate><title>Influence of strain rate and temperature on the onset of strain induced crystallization in natural rubber</title><author>Candau, Nicolas ; Laghmach, Rabia ; Chazeau, Laurent ; Chenal, Jean-Marc ; Gauthier, Catherine ; Biben, Thierry ; Munch, Etienne</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c497t-cbd8df360cb258cdfdb5f3ce0fff203e3f3b1f1b45e759e61563ab8a8cc064333</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Barriers</topic><topic>Crystallization</topic><topic>Engineering Sciences</topic><topic>In situ WAXS</topic><topic>Kinetics</topic><topic>Materials</topic><topic>Mathematical analysis</topic><topic>Natural rubber</topic><topic>Nucleation</topic><topic>Slow strain rate</topic><topic>Strain</topic><topic>Strain induced crystallization</topic><topic>Strain rate</topic><topic>Stretching</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Candau, Nicolas</creatorcontrib><creatorcontrib>Laghmach, Rabia</creatorcontrib><creatorcontrib>Chazeau, Laurent</creatorcontrib><creatorcontrib>Chenal, Jean-Marc</creatorcontrib><creatorcontrib>Gauthier, Catherine</creatorcontrib><creatorcontrib>Biben, Thierry</creatorcontrib><creatorcontrib>Munch, Etienne</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>European polymer journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Candau, Nicolas</au><au>Laghmach, Rabia</au><au>Chazeau, Laurent</au><au>Chenal, Jean-Marc</au><au>Gauthier, Catherine</au><au>Biben, Thierry</au><au>Munch, Etienne</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Influence of strain rate and temperature on the onset of strain induced crystallization in natural rubber</atitle><jtitle>European polymer journal</jtitle><date>2015-03-01</date><risdate>2015</risdate><volume>64</volume><spage>244</spage><epage>252</epage><pages>244-252</pages><issn>0014-3057</issn><eissn>1873-1945</eissn><abstract>[Display omitted] •SIC of NR is investigated thanks to thermal and mechanical analysis.•The stretching ratio at SIC onset increases when the strain rate increases.•The optimum temperature for SIC increases with the strain rate.•A thermodynamic approach provides a good estimate of the experimental data.•Both diffusion and nucleation times are taken into account in the model. Strain induced crystallization (SIC) of natural rubber (NR) has been studied in a large range of strain rate (from 5.6×10−5s−1 to 2.8×101s−1) and temperature (from −40°C to 80°C) combining mechanical and thermal analysis. Both methods are used to extend the study of SIC from slow strain rates – performed with in situ wide angle X-rays scattering (WAXS) – to high strain rates. Whatever the temperature tested, the stretching ratio at crystallization onset (λc) increases when the strain rate increases. This strain rate effect is strong at low temperature (close to Tg) and weak at high temperature (much higher than Tg). A theoretical approach derived from the Hoffman–Lauritzen equation has been developed and provides a good qualitative description of the experimental results. At low temperature, the strong increase of λc with strain rate is explained by a too long diffusion time compared to the experimental time. At high temperature, SIC kinetics is rather controlled by the nucleation barrier which mainly depends on the strain energy. When the stretching ratio increases, this nucleation barrier strongly decreases, allowing crystallization even for short experimental time.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.eurpolymj.2015.01.008</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-9447-1780</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0014-3057
ispartof European polymer journal, 2015-03, Vol.64, p.244-252
issn 0014-3057
1873-1945
language eng
recordid cdi_hal_primary_oai_HAL_hal_01804729v1
source ScienceDirect Journals (5 years ago - present)
subjects Barriers
Crystallization
Engineering Sciences
In situ WAXS
Kinetics
Materials
Mathematical analysis
Natural rubber
Nucleation
Slow strain rate
Strain
Strain induced crystallization
Strain rate
Stretching
title Influence of strain rate and temperature on the onset of strain induced crystallization in natural rubber
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T00%3A12%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Influence%20of%20strain%20rate%20and%20temperature%20on%20the%20onset%20of%20strain%20induced%20crystallization%20in%20natural%20rubber&rft.jtitle=European%20polymer%20journal&rft.au=Candau,%20Nicolas&rft.date=2015-03-01&rft.volume=64&rft.spage=244&rft.epage=252&rft.pages=244-252&rft.issn=0014-3057&rft.eissn=1873-1945&rft_id=info:doi/10.1016/j.eurpolymj.2015.01.008&rft_dat=%3Cproquest_hal_p%3E1677991855%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1677991855&rft_id=info:pmid/&rft_els_id=S0014305715000208&rfr_iscdi=true