Investigation of electrical properties of HfO2 metal–insulator–metal (MIM) devices

This paper is devoted to the study of the electrical properties of Au/HfO 2 /TiN metal–insulator–metal (MIM) capacitors in three distinctive modes: (1) alternative mode ( C – f ), (2) dynamic regime [thermally stimulated currents, TSCs I ( T )] and (3) static mode [ I ( V )]. The electrical paramete...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied physics. A, Materials science & processing Materials science & processing, 2014, Vol.116 (4), p.1647-1653
Hauptverfasser: Khaldi, O., Jomni, F., Gonon, P., Mannequin, C., Yangui, B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1653
container_issue 4
container_start_page 1647
container_title Applied physics. A, Materials science & processing
container_volume 116
creator Khaldi, O.
Jomni, F.
Gonon, P.
Mannequin, C.
Yangui, B.
description This paper is devoted to the study of the electrical properties of Au/HfO 2 /TiN metal–insulator–metal (MIM) capacitors in three distinctive modes: (1) alternative mode ( C – f ), (2) dynamic regime [thermally stimulated currents, TSCs I ( T )] and (3) static mode [ I ( V )]. The electrical parameters are investigated for different temperatures. It is found that capacitance frequency C – f characteristic possesses a low-frequency dispersion that arises for high temperature ( T  > 300 °C). Accordingly, the loss factor exhibits a dielectric relaxation (with an activation energy E a  ~ 1.13 eV) which is intrinsically related to the diffusion of oxygen vacancies. The relaxation mechanisms of electrical defects in a dynamic regime (TSCs) analysis show that defect related to the TSC peak observed at 148.5 °C ( E a  ~ 1 eV) is in agreement with impedance spectroscopy ( C – f ). On the other hand, when the MIM structures are analyzed in static mode, the I – V plots are governed by Schottky emission. The extrapolation of the curve at zero field gives a barrier height of 1.7 eV.
doi_str_mv 10.1007/s00339-014-8292-8
format Article
fullrecord <record><control><sourceid>hal_cross</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01798640v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_HAL_hal_01798640v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c392t-50c71c1662a7695d5bcb6b8e3954a6eeee0e7dda25852304e56b20ace6c091c53</originalsourceid><addsrcrecordid>eNp9kE1OwzAQhS0EEqVwAHZZ0oVh_Jt4WVVAKxV1A2wtx3GKqzSp7LQSO-7ADTkJDkUsmc2M3rxvpHkIXRO4JQD5XQRgTGEgHBdUUVycoBHhjGKQDE7RCBTPccGUPEcXMW4gFad0hF4X7cHF3q9N77s26-rMNc72wVvTZLvQ7VzovYvDYl6vaLZ1vWm-Pj59G_eN6buQ5h8tu3laPE2yyh28dfESndWmie7qt4_Ry8P982yOl6vHxWy6xJYp2mMBNieWSElNLpWoRGlLWRaOKcGNdKnA5VVlqCgEZcCdkCUFY520oIgVbIwmx7tvptG74LcmvOvOeD2fLvWgAclVITkcSPKSo9eGLsbg6j-AgB5C1McQE8P1EKIuEkOPTEzedu2C3nT70KaX_oG-AaRxdiY</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Investigation of electrical properties of HfO2 metal–insulator–metal (MIM) devices</title><source>Springer Nature - Complete Springer Journals</source><creator>Khaldi, O. ; Jomni, F. ; Gonon, P. ; Mannequin, C. ; Yangui, B.</creator><creatorcontrib>Khaldi, O. ; Jomni, F. ; Gonon, P. ; Mannequin, C. ; Yangui, B.</creatorcontrib><description>This paper is devoted to the study of the electrical properties of Au/HfO 2 /TiN metal–insulator–metal (MIM) capacitors in three distinctive modes: (1) alternative mode ( C – f ), (2) dynamic regime [thermally stimulated currents, TSCs I ( T )] and (3) static mode [ I ( V )]. The electrical parameters are investigated for different temperatures. It is found that capacitance frequency C – f characteristic possesses a low-frequency dispersion that arises for high temperature ( T  &gt; 300 °C). Accordingly, the loss factor exhibits a dielectric relaxation (with an activation energy E a  ~ 1.13 eV) which is intrinsically related to the diffusion of oxygen vacancies. The relaxation mechanisms of electrical defects in a dynamic regime (TSCs) analysis show that defect related to the TSC peak observed at 148.5 °C ( E a  ~ 1 eV) is in agreement with impedance spectroscopy ( C – f ). On the other hand, when the MIM structures are analyzed in static mode, the I – V plots are governed by Schottky emission. The extrapolation of the curve at zero field gives a barrier height of 1.7 eV.</description><identifier>ISSN: 0947-8396</identifier><identifier>EISSN: 1432-0630</identifier><identifier>DOI: 10.1007/s00339-014-8292-8</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Characterization and Evaluation of Materials ; Condensed Matter Physics ; Machines ; Manufacturing ; Nanotechnology ; Optical and Electronic Materials ; Physics ; Physics and Astronomy ; Processes ; Surfaces and Interfaces ; Thin Films</subject><ispartof>Applied physics. A, Materials science &amp; processing, 2014, Vol.116 (4), p.1647-1653</ispartof><rights>Springer-Verlag Berlin Heidelberg 2014</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c392t-50c71c1662a7695d5bcb6b8e3954a6eeee0e7dda25852304e56b20ace6c091c53</citedby><cites>FETCH-LOGICAL-c392t-50c71c1662a7695d5bcb6b8e3954a6eeee0e7dda25852304e56b20ace6c091c53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00339-014-8292-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00339-014-8292-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://hal.science/hal-01798640$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Khaldi, O.</creatorcontrib><creatorcontrib>Jomni, F.</creatorcontrib><creatorcontrib>Gonon, P.</creatorcontrib><creatorcontrib>Mannequin, C.</creatorcontrib><creatorcontrib>Yangui, B.</creatorcontrib><title>Investigation of electrical properties of HfO2 metal–insulator–metal (MIM) devices</title><title>Applied physics. A, Materials science &amp; processing</title><addtitle>Appl. Phys. A</addtitle><description>This paper is devoted to the study of the electrical properties of Au/HfO 2 /TiN metal–insulator–metal (MIM) capacitors in three distinctive modes: (1) alternative mode ( C – f ), (2) dynamic regime [thermally stimulated currents, TSCs I ( T )] and (3) static mode [ I ( V )]. The electrical parameters are investigated for different temperatures. It is found that capacitance frequency C – f characteristic possesses a low-frequency dispersion that arises for high temperature ( T  &gt; 300 °C). Accordingly, the loss factor exhibits a dielectric relaxation (with an activation energy E a  ~ 1.13 eV) which is intrinsically related to the diffusion of oxygen vacancies. The relaxation mechanisms of electrical defects in a dynamic regime (TSCs) analysis show that defect related to the TSC peak observed at 148.5 °C ( E a  ~ 1 eV) is in agreement with impedance spectroscopy ( C – f ). On the other hand, when the MIM structures are analyzed in static mode, the I – V plots are governed by Schottky emission. The extrapolation of the curve at zero field gives a barrier height of 1.7 eV.</description><subject>Characterization and Evaluation of Materials</subject><subject>Condensed Matter Physics</subject><subject>Machines</subject><subject>Manufacturing</subject><subject>Nanotechnology</subject><subject>Optical and Electronic Materials</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Processes</subject><subject>Surfaces and Interfaces</subject><subject>Thin Films</subject><issn>0947-8396</issn><issn>1432-0630</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNp9kE1OwzAQhS0EEqVwAHZZ0oVh_Jt4WVVAKxV1A2wtx3GKqzSp7LQSO-7ADTkJDkUsmc2M3rxvpHkIXRO4JQD5XQRgTGEgHBdUUVycoBHhjGKQDE7RCBTPccGUPEcXMW4gFad0hF4X7cHF3q9N77s26-rMNc72wVvTZLvQ7VzovYvDYl6vaLZ1vWm-Pj59G_eN6buQ5h8tu3laPE2yyh28dfESndWmie7qt4_Ry8P982yOl6vHxWy6xJYp2mMBNieWSElNLpWoRGlLWRaOKcGNdKnA5VVlqCgEZcCdkCUFY520oIgVbIwmx7tvptG74LcmvOvOeD2fLvWgAclVITkcSPKSo9eGLsbg6j-AgB5C1McQE8P1EKIuEkOPTEzedu2C3nT70KaX_oG-AaRxdiY</recordid><startdate>2014</startdate><enddate>2014</enddate><creator>Khaldi, O.</creator><creator>Jomni, F.</creator><creator>Gonon, P.</creator><creator>Mannequin, C.</creator><creator>Yangui, B.</creator><general>Springer Berlin Heidelberg</general><general>Springer Verlag</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope></search><sort><creationdate>2014</creationdate><title>Investigation of electrical properties of HfO2 metal–insulator–metal (MIM) devices</title><author>Khaldi, O. ; Jomni, F. ; Gonon, P. ; Mannequin, C. ; Yangui, B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c392t-50c71c1662a7695d5bcb6b8e3954a6eeee0e7dda25852304e56b20ace6c091c53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Characterization and Evaluation of Materials</topic><topic>Condensed Matter Physics</topic><topic>Machines</topic><topic>Manufacturing</topic><topic>Nanotechnology</topic><topic>Optical and Electronic Materials</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Processes</topic><topic>Surfaces and Interfaces</topic><topic>Thin Films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Khaldi, O.</creatorcontrib><creatorcontrib>Jomni, F.</creatorcontrib><creatorcontrib>Gonon, P.</creatorcontrib><creatorcontrib>Mannequin, C.</creatorcontrib><creatorcontrib>Yangui, B.</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Applied physics. A, Materials science &amp; processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Khaldi, O.</au><au>Jomni, F.</au><au>Gonon, P.</au><au>Mannequin, C.</au><au>Yangui, B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Investigation of electrical properties of HfO2 metal–insulator–metal (MIM) devices</atitle><jtitle>Applied physics. A, Materials science &amp; processing</jtitle><stitle>Appl. Phys. A</stitle><date>2014</date><risdate>2014</risdate><volume>116</volume><issue>4</issue><spage>1647</spage><epage>1653</epage><pages>1647-1653</pages><issn>0947-8396</issn><eissn>1432-0630</eissn><abstract>This paper is devoted to the study of the electrical properties of Au/HfO 2 /TiN metal–insulator–metal (MIM) capacitors in three distinctive modes: (1) alternative mode ( C – f ), (2) dynamic regime [thermally stimulated currents, TSCs I ( T )] and (3) static mode [ I ( V )]. The electrical parameters are investigated for different temperatures. It is found that capacitance frequency C – f characteristic possesses a low-frequency dispersion that arises for high temperature ( T  &gt; 300 °C). Accordingly, the loss factor exhibits a dielectric relaxation (with an activation energy E a  ~ 1.13 eV) which is intrinsically related to the diffusion of oxygen vacancies. The relaxation mechanisms of electrical defects in a dynamic regime (TSCs) analysis show that defect related to the TSC peak observed at 148.5 °C ( E a  ~ 1 eV) is in agreement with impedance spectroscopy ( C – f ). On the other hand, when the MIM structures are analyzed in static mode, the I – V plots are governed by Schottky emission. The extrapolation of the curve at zero field gives a barrier height of 1.7 eV.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00339-014-8292-8</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0947-8396
ispartof Applied physics. A, Materials science & processing, 2014, Vol.116 (4), p.1647-1653
issn 0947-8396
1432-0630
language eng
recordid cdi_hal_primary_oai_HAL_hal_01798640v1
source Springer Nature - Complete Springer Journals
subjects Characterization and Evaluation of Materials
Condensed Matter Physics
Machines
Manufacturing
Nanotechnology
Optical and Electronic Materials
Physics
Physics and Astronomy
Processes
Surfaces and Interfaces
Thin Films
title Investigation of electrical properties of HfO2 metal–insulator–metal (MIM) devices
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T16%3A08%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Investigation%20of%20electrical%20properties%20of%20HfO2%20metal%E2%80%93insulator%E2%80%93metal%20(MIM)%20devices&rft.jtitle=Applied%20physics.%20A,%20Materials%20science%20&%20processing&rft.au=Khaldi,%20O.&rft.date=2014&rft.volume=116&rft.issue=4&rft.spage=1647&rft.epage=1653&rft.pages=1647-1653&rft.issn=0947-8396&rft.eissn=1432-0630&rft_id=info:doi/10.1007/s00339-014-8292-8&rft_dat=%3Chal_cross%3Eoai_HAL_hal_01798640v1%3C/hal_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true