How to Help a Pedagogical Team of a MOOC Identify the “Leader Learners”?

This paper proposes a method for the identification of the “Leader Learners” within Massive Open Online Courses (MOOCs) in order to improve the support process. The “Leader Learners” are those who will be mobilized to animate the forum. Their role is to help the other learners find the information t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Bouzayane, Sarra, Saad, Inès
Format: Buchkapitel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 151
container_issue LNBIP, volume 274
container_start_page 140
container_title
container_volume 274
creator Bouzayane, Sarra
Saad, Inès
description This paper proposes a method for the identification of the “Leader Learners” within Massive Open Online Courses (MOOCs) in order to improve the support process. The “Leader Learners” are those who will be mobilized to animate the forum. Their role is to help the other learners find the information they need during the MOOC so as not to drop it. This method is based on the Dominance-based Rough Set Approach (DRSA) to infer a preference model generating a set of decision rules. The DRSA relies on the expertise of the human decision makers, who are in our case the pedagogical team, to make a multicriteria decision based on their preferences. This decision concerns the classification of learners either in the decision class Cl1 of the “Non Leader Learners” or in the decision class Cl2 of the “Leader Learners”. Our method is validated on a French MOOC proposed by a Business School in France.
doi_str_mv 10.1007/978-3-319-52624-9_11
format Book Chapter
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01796317v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>EBC5578209_135_147</sourcerecordid><originalsourceid>FETCH-LOGICAL-g353t-579cf81636b4720000f70d5135e2da699d929acbac974698ff86e7df8dd6692c3</originalsourceid><addsrcrecordid>eNqNkM1OwkAUhcffCMgbuJiti-r8dP5WhhC1JDW4wPXN0JkCWii2VcOOB9GX40kcQF27usm559yc-yF0QckVJURdG6UjHnFqIsEkiyMDlB6gbpB5EHeaOUQtqqWIKBfyCLV_F1wc_y1ifYralEhJdSy1OkPdun4mhDAVS8ZUC6VJ-YGbEie-WGKLH72zk3Iyy2yBR97OcZkH9WE47OOB84tmlq9wM_V4s_5MvXW-wmFUC1_Vm_XXzTk6yW1R--7P7KCnu9tRP4nS4f2g30ujCRe8iYQyWa6p5HIcKxbakFwRJ8IbnjkrjXGGGZuNbWZCTaPzXEuvXK6dk9KwjHfQ5f7u1BawrGZzW62gtDNIeilsNUKVkZyqdxq8bO-tg3Ex8RWMy_KlBkpgCxoCUeAQ0MEOKmxBh1C8Dy2r8vXN1w34bSoLBCpbZFO7bMLLIJnmklEIzYHG6r8xIZRmxPzFvgGwaYxq</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>book_chapter</recordtype><pqid>EBC5578209_135_147</pqid></control><display><type>book_chapter</type><title>How to Help a Pedagogical Team of a MOOC Identify the “Leader Learners”?</title><source>Springer Books</source><creator>Bouzayane, Sarra ; Saad, Inès</creator><contributor>Vetschera, Rudolf ; Bajwa, Deepinder ; Koeszegi, Sabine T</contributor><creatorcontrib>Bouzayane, Sarra ; Saad, Inès ; Vetschera, Rudolf ; Bajwa, Deepinder ; Koeszegi, Sabine T</creatorcontrib><description>This paper proposes a method for the identification of the “Leader Learners” within Massive Open Online Courses (MOOCs) in order to improve the support process. The “Leader Learners” are those who will be mobilized to animate the forum. Their role is to help the other learners find the information they need during the MOOC so as not to drop it. This method is based on the Dominance-based Rough Set Approach (DRSA) to infer a preference model generating a set of decision rules. The DRSA relies on the expertise of the human decision makers, who are in our case the pedagogical team, to make a multicriteria decision based on their preferences. This decision concerns the classification of learners either in the decision class Cl1 of the “Non Leader Learners” or in the decision class Cl2 of the “Leader Learners”. Our method is validated on a French MOOC proposed by a Business School in France.</description><identifier>ISSN: 1865-1348</identifier><identifier>ISBN: 3319526235</identifier><identifier>ISBN: 9783319526232</identifier><identifier>ISBN: 9783319526249</identifier><identifier>ISBN: 3319526243</identifier><identifier>EISSN: 1865-1356</identifier><identifier>EISBN: 9783319526249</identifier><identifier>EISBN: 3319526243</identifier><identifier>DOI: 10.1007/978-3-319-52624-9_11</identifier><identifier>OCLC: 1066184687</identifier><identifier>LCCallNum: HD28-70HD30.2HD30.23</identifier><language>eng</language><publisher>Switzerland: Springer International Publishing AG</publisher><subject>Artificial Intelligence ; Computer Science ; DRSA ; Leader Learner ; Machine Learning ; Massive open online courses ; Pedagogical team ; Preference model</subject><ispartof>Group Decision and Negotiation. Theory, Empirical Evidence, and Application, 2017, Vol.274 (LNBIP, volume 274), p.140-151</ispartof><rights>Springer International Publishing AG 2017</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0003-3287-9112 ; 0000-0001-6494-7867</orcidid><relation>Lecture Notes in Business Information Processing</relation></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttps://ebookcentral.proquest.com/covers/5578209-l.jpg</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/978-3-319-52624-9_11$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/978-3-319-52624-9_11$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,775,776,780,789,881,27902,38232,41418,42487</link.rule.ids><backlink>$$Uhttps://hal.science/hal-01796317$$DView record in HAL$$Hfree_for_read</backlink></links><search><contributor>Vetschera, Rudolf</contributor><contributor>Bajwa, Deepinder</contributor><contributor>Koeszegi, Sabine T</contributor><creatorcontrib>Bouzayane, Sarra</creatorcontrib><creatorcontrib>Saad, Inès</creatorcontrib><title>How to Help a Pedagogical Team of a MOOC Identify the “Leader Learners”?</title><title>Group Decision and Negotiation. Theory, Empirical Evidence, and Application</title><description>This paper proposes a method for the identification of the “Leader Learners” within Massive Open Online Courses (MOOCs) in order to improve the support process. The “Leader Learners” are those who will be mobilized to animate the forum. Their role is to help the other learners find the information they need during the MOOC so as not to drop it. This method is based on the Dominance-based Rough Set Approach (DRSA) to infer a preference model generating a set of decision rules. The DRSA relies on the expertise of the human decision makers, who are in our case the pedagogical team, to make a multicriteria decision based on their preferences. This decision concerns the classification of learners either in the decision class Cl1 of the “Non Leader Learners” or in the decision class Cl2 of the “Leader Learners”. Our method is validated on a French MOOC proposed by a Business School in France.</description><subject>Artificial Intelligence</subject><subject>Computer Science</subject><subject>DRSA</subject><subject>Leader Learner</subject><subject>Machine Learning</subject><subject>Massive open online courses</subject><subject>Pedagogical team</subject><subject>Preference model</subject><issn>1865-1348</issn><issn>1865-1356</issn><isbn>3319526235</isbn><isbn>9783319526232</isbn><isbn>9783319526249</isbn><isbn>3319526243</isbn><isbn>9783319526249</isbn><isbn>3319526243</isbn><fulltext>true</fulltext><rsrctype>book_chapter</rsrctype><creationdate>2017</creationdate><recordtype>book_chapter</recordtype><recordid>eNqNkM1OwkAUhcffCMgbuJiti-r8dP5WhhC1JDW4wPXN0JkCWii2VcOOB9GX40kcQF27usm559yc-yF0QckVJURdG6UjHnFqIsEkiyMDlB6gbpB5EHeaOUQtqqWIKBfyCLV_F1wc_y1ifYralEhJdSy1OkPdun4mhDAVS8ZUC6VJ-YGbEie-WGKLH72zk3Iyy2yBR97OcZkH9WE47OOB84tmlq9wM_V4s_5MvXW-wmFUC1_Vm_XXzTk6yW1R--7P7KCnu9tRP4nS4f2g30ujCRe8iYQyWa6p5HIcKxbakFwRJ8IbnjkrjXGGGZuNbWZCTaPzXEuvXK6dk9KwjHfQ5f7u1BawrGZzW62gtDNIeilsNUKVkZyqdxq8bO-tg3Ex8RWMy_KlBkpgCxoCUeAQ0MEOKmxBh1C8Dy2r8vXN1w34bSoLBCpbZFO7bMLLIJnmklEIzYHG6r8xIZRmxPzFvgGwaYxq</recordid><startdate>2017</startdate><enddate>2017</enddate><creator>Bouzayane, Sarra</creator><creator>Saad, Inès</creator><general>Springer International Publishing AG</general><general>Springer International Publishing</general><scope>FFUUA</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0003-3287-9112</orcidid><orcidid>https://orcid.org/0000-0001-6494-7867</orcidid></search><sort><creationdate>2017</creationdate><title>How to Help a Pedagogical Team of a MOOC Identify the “Leader Learners”?</title><author>Bouzayane, Sarra ; Saad, Inès</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-g353t-579cf81636b4720000f70d5135e2da699d929acbac974698ff86e7df8dd6692c3</frbrgroupid><rsrctype>book_chapters</rsrctype><prefilter>book_chapters</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Artificial Intelligence</topic><topic>Computer Science</topic><topic>DRSA</topic><topic>Leader Learner</topic><topic>Machine Learning</topic><topic>Massive open online courses</topic><topic>Pedagogical team</topic><topic>Preference model</topic><toplevel>online_resources</toplevel><creatorcontrib>Bouzayane, Sarra</creatorcontrib><creatorcontrib>Saad, Inès</creatorcontrib><collection>ProQuest Ebook Central - Book Chapters - Demo use only</collection><collection>Hyper Article en Ligne (HAL)</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bouzayane, Sarra</au><au>Saad, Inès</au><au>Vetschera, Rudolf</au><au>Bajwa, Deepinder</au><au>Koeszegi, Sabine T</au><format>book</format><genre>bookitem</genre><ristype>CHAP</ristype><atitle>How to Help a Pedagogical Team of a MOOC Identify the “Leader Learners”?</atitle><btitle>Group Decision and Negotiation. Theory, Empirical Evidence, and Application</btitle><seriestitle>Lecture Notes in Business Information Processing</seriestitle><date>2017</date><risdate>2017</risdate><volume>274</volume><issue>LNBIP, volume 274</issue><spage>140</spage><epage>151</epage><pages>140-151</pages><issn>1865-1348</issn><eissn>1865-1356</eissn><isbn>3319526235</isbn><isbn>9783319526232</isbn><isbn>9783319526249</isbn><isbn>3319526243</isbn><eisbn>9783319526249</eisbn><eisbn>3319526243</eisbn><abstract>This paper proposes a method for the identification of the “Leader Learners” within Massive Open Online Courses (MOOCs) in order to improve the support process. The “Leader Learners” are those who will be mobilized to animate the forum. Their role is to help the other learners find the information they need during the MOOC so as not to drop it. This method is based on the Dominance-based Rough Set Approach (DRSA) to infer a preference model generating a set of decision rules. The DRSA relies on the expertise of the human decision makers, who are in our case the pedagogical team, to make a multicriteria decision based on their preferences. This decision concerns the classification of learners either in the decision class Cl1 of the “Non Leader Learners” or in the decision class Cl2 of the “Leader Learners”. Our method is validated on a French MOOC proposed by a Business School in France.</abstract><cop>Switzerland</cop><pub>Springer International Publishing AG</pub><doi>10.1007/978-3-319-52624-9_11</doi><oclcid>1066184687</oclcid><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-3287-9112</orcidid><orcidid>https://orcid.org/0000-0001-6494-7867</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1865-1348
ispartof Group Decision and Negotiation. Theory, Empirical Evidence, and Application, 2017, Vol.274 (LNBIP, volume 274), p.140-151
issn 1865-1348
1865-1356
language eng
recordid cdi_hal_primary_oai_HAL_hal_01796317v1
source Springer Books
subjects Artificial Intelligence
Computer Science
DRSA
Leader Learner
Machine Learning
Massive open online courses
Pedagogical team
Preference model
title How to Help a Pedagogical Team of a MOOC Identify the “Leader Learners”?
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T00%3A29%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=bookitem&rft.atitle=How%20to%20Help%20a%20Pedagogical%20Team%20of%20a%20MOOC%20Identify%20the%20%E2%80%9CLeader%20Learners%E2%80%9D?&rft.btitle=Group%20Decision%20and%20Negotiation.%20Theory,%20Empirical%20Evidence,%20and%20Application&rft.au=Bouzayane,%20Sarra&rft.date=2017&rft.volume=274&rft.issue=LNBIP,%20volume%20274&rft.spage=140&rft.epage=151&rft.pages=140-151&rft.issn=1865-1348&rft.eissn=1865-1356&rft.isbn=3319526235&rft.isbn_list=9783319526232&rft.isbn_list=9783319526249&rft.isbn_list=3319526243&rft_id=info:doi/10.1007/978-3-319-52624-9_11&rft_dat=%3Cproquest_hal_p%3EEBC5578209_135_147%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&rft.eisbn=9783319526249&rft.eisbn_list=3319526243&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=EBC5578209_135_147&rft_id=info:pmid/&rfr_iscdi=true