Non‐linear stochastic inversion of gravity data via quantum‐behaved particle swarm optimisation: application to Eurasia–Arabia collision zone (Zagros, Iran)

ABSTRACT Potential field data such as geoid and gravity anomalies are globally available and offer valuable information about the Earth's lithosphere especially in areas where seismic data coverage is sparse. For instance, non‐linear inversion of Bouguer anomalies could be used to estimate the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Geophysical Prospecting 2017-12, Vol.65 (S1), p.274-294
Hauptverfasser: Jamasb, Ali, Motavalli‐Anbaran, Seyed‐Hani, Zeyen, Hermann
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 294
container_issue S1
container_start_page 274
container_title Geophysical Prospecting
container_volume 65
creator Jamasb, Ali
Motavalli‐Anbaran, Seyed‐Hani
Zeyen, Hermann
description ABSTRACT Potential field data such as geoid and gravity anomalies are globally available and offer valuable information about the Earth's lithosphere especially in areas where seismic data coverage is sparse. For instance, non‐linear inversion of Bouguer anomalies could be used to estimate the crustal structures including variations of the crustal density and of the depth of the crust–mantle boundary, that is, Moho. However, due to non‐linearity of this inverse problem, classical inversion methods would fail whenever there is no reliable initial model. Swarm intelligence algorithms, such as particle swarm optimisation, are a promising alternative to classical inversion methods because the quality of their solutions does not depend on the initial model; they do not use the derivatives of the objective function, hence allowing the use of L1 norm; and finally, they are global search methods, meaning, the problem could be non‐convex. In this paper, quantum‐behaved particle swarm, a probabilistic swarm intelligence‐like algorithm, is used to solve the non‐linear gravity inverse problem. The method is first successfully tested on a realistic synthetic crustal model with a linear vertical density gradient and lateral density and depth variations at the base of crust in the presence of white Gaussian noise. Then, it is applied to the EIGEN 6c4, a combined global gravity model, to estimate the depth to the base of the crust and the mean density contrast between the crust and the upper‐mantle lithosphere in the Eurasia–Arabia continental collision zone along a 400 km profile crossing the Zagros Mountains (Iran). The results agree well with previously published works including both seismic and potential field studies.
doi_str_mv 10.1111/1365-2478.12558
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01791073v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1980706623</sourcerecordid><originalsourceid>FETCH-LOGICAL-a3728-9aed03aaf99c82af5d6815ce4292421003c43b82505d4b92638964afdd874a0d3</originalsourceid><addsrcrecordid>eNqFkc9q3DAQxkVJoZuk514FvSQQb_THsuXcliVNFpY0lPbSi5i15ayC13Ik2WF7yiMU-gZ5tDxJtOuSa-YiZvh932j4EPpCyZTGOqc8EwlLczmlTAj5AU3eJgdoQgjNEkmY-IQOvb8nhBMh0gl6vrHty9PfxrQaHPbBlmvwwZTYtIN23tgW2xrfORhM2OIKAuDBAH7ooQ39JipXeg2DrnAHLsoajf0juA22XTAb4yFEhwsMXdeYct_gYPFl78AbeHn6N3OwinalbRqzX_bHthqf_IY7Z_0ZXjhoT4_Rxxoarz__f4_Qr2-XP-fXyfL71WI-WybAcyaTAnRFOEBdFKVkUIsqk1SUOmUFSxmNF5cpX0kmiKjSVcEyLosshbqqZJ4CqfgROh1919CozpkNuK2yYNT1bKl2M0LzgpKcDzSyX0e2c_ah1z6oe9u7Nn5P0UKSnGQZ45E6H6kyXuOdrt9sKVG70NQuIrWLSO1DiwoxKh5No7fv4erq9seoewUGcJ20</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1980706623</pqid></control><display><type>article</type><title>Non‐linear stochastic inversion of gravity data via quantum‐behaved particle swarm optimisation: application to Eurasia–Arabia collision zone (Zagros, Iran)</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Jamasb, Ali ; Motavalli‐Anbaran, Seyed‐Hani ; Zeyen, Hermann</creator><creatorcontrib>Jamasb, Ali ; Motavalli‐Anbaran, Seyed‐Hani ; Zeyen, Hermann</creatorcontrib><description>ABSTRACT Potential field data such as geoid and gravity anomalies are globally available and offer valuable information about the Earth's lithosphere especially in areas where seismic data coverage is sparse. For instance, non‐linear inversion of Bouguer anomalies could be used to estimate the crustal structures including variations of the crustal density and of the depth of the crust–mantle boundary, that is, Moho. However, due to non‐linearity of this inverse problem, classical inversion methods would fail whenever there is no reliable initial model. Swarm intelligence algorithms, such as particle swarm optimisation, are a promising alternative to classical inversion methods because the quality of their solutions does not depend on the initial model; they do not use the derivatives of the objective function, hence allowing the use of L1 norm; and finally, they are global search methods, meaning, the problem could be non‐convex. In this paper, quantum‐behaved particle swarm, a probabilistic swarm intelligence‐like algorithm, is used to solve the non‐linear gravity inverse problem. The method is first successfully tested on a realistic synthetic crustal model with a linear vertical density gradient and lateral density and depth variations at the base of crust in the presence of white Gaussian noise. Then, it is applied to the EIGEN 6c4, a combined global gravity model, to estimate the depth to the base of the crust and the mean density contrast between the crust and the upper‐mantle lithosphere in the Eurasia–Arabia continental collision zone along a 400 km profile crossing the Zagros Mountains (Iran). The results agree well with previously published works including both seismic and potential field studies.</description><identifier>ISSN: 0016-8025</identifier><identifier>EISSN: 1365-2478</identifier><identifier>DOI: 10.1111/1365-2478.12558</identifier><language>eng</language><publisher>Houten: Wiley Subscription Services, Inc</publisher><subject>Algorithms ; Anomalies ; Bouguer anomalies ; Density ; Density gradients ; Depth ; Earth ; Earth mantle ; Earth Sciences ; Geoid ; Gravitation ; Gravity ; Gravity anomalies ; Gravity data ; Inverse problems ; Linearity ; Lithosphere ; Mantle ; Mathematical models ; Methods ; Modelling ; Moho ; Mountains ; Nonlinearity ; Numerical study ; Objective function ; Particle swarm optimization ; Potential fields ; Sciences of the Universe ; Seismic data ; Solutions ; Swarm intelligence ; Upper mantle</subject><ispartof>Geophysical Prospecting, 2017-12, Vol.65 (S1), p.274-294</ispartof><rights>2017 European Association of Geoscientists &amp; Engineers</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a3728-9aed03aaf99c82af5d6815ce4292421003c43b82505d4b92638964afdd874a0d3</citedby><cites>FETCH-LOGICAL-a3728-9aed03aaf99c82af5d6815ce4292421003c43b82505d4b92638964afdd874a0d3</cites><orcidid>0000-0003-1820-9032</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2F1365-2478.12558$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2F1365-2478.12558$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,776,780,881,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://hal.science/hal-01791073$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Jamasb, Ali</creatorcontrib><creatorcontrib>Motavalli‐Anbaran, Seyed‐Hani</creatorcontrib><creatorcontrib>Zeyen, Hermann</creatorcontrib><title>Non‐linear stochastic inversion of gravity data via quantum‐behaved particle swarm optimisation: application to Eurasia–Arabia collision zone (Zagros, Iran)</title><title>Geophysical Prospecting</title><description>ABSTRACT Potential field data such as geoid and gravity anomalies are globally available and offer valuable information about the Earth's lithosphere especially in areas where seismic data coverage is sparse. For instance, non‐linear inversion of Bouguer anomalies could be used to estimate the crustal structures including variations of the crustal density and of the depth of the crust–mantle boundary, that is, Moho. However, due to non‐linearity of this inverse problem, classical inversion methods would fail whenever there is no reliable initial model. Swarm intelligence algorithms, such as particle swarm optimisation, are a promising alternative to classical inversion methods because the quality of their solutions does not depend on the initial model; they do not use the derivatives of the objective function, hence allowing the use of L1 norm; and finally, they are global search methods, meaning, the problem could be non‐convex. In this paper, quantum‐behaved particle swarm, a probabilistic swarm intelligence‐like algorithm, is used to solve the non‐linear gravity inverse problem. The method is first successfully tested on a realistic synthetic crustal model with a linear vertical density gradient and lateral density and depth variations at the base of crust in the presence of white Gaussian noise. Then, it is applied to the EIGEN 6c4, a combined global gravity model, to estimate the depth to the base of the crust and the mean density contrast between the crust and the upper‐mantle lithosphere in the Eurasia–Arabia continental collision zone along a 400 km profile crossing the Zagros Mountains (Iran). The results agree well with previously published works including both seismic and potential field studies.</description><subject>Algorithms</subject><subject>Anomalies</subject><subject>Bouguer anomalies</subject><subject>Density</subject><subject>Density gradients</subject><subject>Depth</subject><subject>Earth</subject><subject>Earth mantle</subject><subject>Earth Sciences</subject><subject>Geoid</subject><subject>Gravitation</subject><subject>Gravity</subject><subject>Gravity anomalies</subject><subject>Gravity data</subject><subject>Inverse problems</subject><subject>Linearity</subject><subject>Lithosphere</subject><subject>Mantle</subject><subject>Mathematical models</subject><subject>Methods</subject><subject>Modelling</subject><subject>Moho</subject><subject>Mountains</subject><subject>Nonlinearity</subject><subject>Numerical study</subject><subject>Objective function</subject><subject>Particle swarm optimization</subject><subject>Potential fields</subject><subject>Sciences of the Universe</subject><subject>Seismic data</subject><subject>Solutions</subject><subject>Swarm intelligence</subject><subject>Upper mantle</subject><issn>0016-8025</issn><issn>1365-2478</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqFkc9q3DAQxkVJoZuk514FvSQQb_THsuXcliVNFpY0lPbSi5i15ayC13Ik2WF7yiMU-gZ5tDxJtOuSa-YiZvh932j4EPpCyZTGOqc8EwlLczmlTAj5AU3eJgdoQgjNEkmY-IQOvb8nhBMh0gl6vrHty9PfxrQaHPbBlmvwwZTYtIN23tgW2xrfORhM2OIKAuDBAH7ooQ39JipXeg2DrnAHLsoajf0juA22XTAb4yFEhwsMXdeYct_gYPFl78AbeHn6N3OwinalbRqzX_bHthqf_IY7Z_0ZXjhoT4_Rxxoarz__f4_Qr2-XP-fXyfL71WI-WybAcyaTAnRFOEBdFKVkUIsqk1SUOmUFSxmNF5cpX0kmiKjSVcEyLosshbqqZJ4CqfgROh1919CozpkNuK2yYNT1bKl2M0LzgpKcDzSyX0e2c_ah1z6oe9u7Nn5P0UKSnGQZ45E6H6kyXuOdrt9sKVG70NQuIrWLSO1DiwoxKh5No7fv4erq9seoewUGcJ20</recordid><startdate>201712</startdate><enddate>201712</enddate><creator>Jamasb, Ali</creator><creator>Motavalli‐Anbaran, Seyed‐Hani</creator><creator>Zeyen, Hermann</creator><general>Wiley Subscription Services, Inc</general><general>Wiley</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>F1W</scope><scope>FR3</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0003-1820-9032</orcidid></search><sort><creationdate>201712</creationdate><title>Non‐linear stochastic inversion of gravity data via quantum‐behaved particle swarm optimisation: application to Eurasia–Arabia collision zone (Zagros, Iran)</title><author>Jamasb, Ali ; Motavalli‐Anbaran, Seyed‐Hani ; Zeyen, Hermann</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a3728-9aed03aaf99c82af5d6815ce4292421003c43b82505d4b92638964afdd874a0d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Algorithms</topic><topic>Anomalies</topic><topic>Bouguer anomalies</topic><topic>Density</topic><topic>Density gradients</topic><topic>Depth</topic><topic>Earth</topic><topic>Earth mantle</topic><topic>Earth Sciences</topic><topic>Geoid</topic><topic>Gravitation</topic><topic>Gravity</topic><topic>Gravity anomalies</topic><topic>Gravity data</topic><topic>Inverse problems</topic><topic>Linearity</topic><topic>Lithosphere</topic><topic>Mantle</topic><topic>Mathematical models</topic><topic>Methods</topic><topic>Modelling</topic><topic>Moho</topic><topic>Mountains</topic><topic>Nonlinearity</topic><topic>Numerical study</topic><topic>Objective function</topic><topic>Particle swarm optimization</topic><topic>Potential fields</topic><topic>Sciences of the Universe</topic><topic>Seismic data</topic><topic>Solutions</topic><topic>Swarm intelligence</topic><topic>Upper mantle</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jamasb, Ali</creatorcontrib><creatorcontrib>Motavalli‐Anbaran, Seyed‐Hani</creatorcontrib><creatorcontrib>Zeyen, Hermann</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Geophysical Prospecting</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jamasb, Ali</au><au>Motavalli‐Anbaran, Seyed‐Hani</au><au>Zeyen, Hermann</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Non‐linear stochastic inversion of gravity data via quantum‐behaved particle swarm optimisation: application to Eurasia–Arabia collision zone (Zagros, Iran)</atitle><jtitle>Geophysical Prospecting</jtitle><date>2017-12</date><risdate>2017</risdate><volume>65</volume><issue>S1</issue><spage>274</spage><epage>294</epage><pages>274-294</pages><issn>0016-8025</issn><eissn>1365-2478</eissn><abstract>ABSTRACT Potential field data such as geoid and gravity anomalies are globally available and offer valuable information about the Earth's lithosphere especially in areas where seismic data coverage is sparse. For instance, non‐linear inversion of Bouguer anomalies could be used to estimate the crustal structures including variations of the crustal density and of the depth of the crust–mantle boundary, that is, Moho. However, due to non‐linearity of this inverse problem, classical inversion methods would fail whenever there is no reliable initial model. Swarm intelligence algorithms, such as particle swarm optimisation, are a promising alternative to classical inversion methods because the quality of their solutions does not depend on the initial model; they do not use the derivatives of the objective function, hence allowing the use of L1 norm; and finally, they are global search methods, meaning, the problem could be non‐convex. In this paper, quantum‐behaved particle swarm, a probabilistic swarm intelligence‐like algorithm, is used to solve the non‐linear gravity inverse problem. The method is first successfully tested on a realistic synthetic crustal model with a linear vertical density gradient and lateral density and depth variations at the base of crust in the presence of white Gaussian noise. Then, it is applied to the EIGEN 6c4, a combined global gravity model, to estimate the depth to the base of the crust and the mean density contrast between the crust and the upper‐mantle lithosphere in the Eurasia–Arabia continental collision zone along a 400 km profile crossing the Zagros Mountains (Iran). The results agree well with previously published works including both seismic and potential field studies.</abstract><cop>Houten</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1111/1365-2478.12558</doi><tpages>21</tpages><orcidid>https://orcid.org/0000-0003-1820-9032</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0016-8025
ispartof Geophysical Prospecting, 2017-12, Vol.65 (S1), p.274-294
issn 0016-8025
1365-2478
language eng
recordid cdi_hal_primary_oai_HAL_hal_01791073v1
source Wiley Online Library Journals Frontfile Complete
subjects Algorithms
Anomalies
Bouguer anomalies
Density
Density gradients
Depth
Earth
Earth mantle
Earth Sciences
Geoid
Gravitation
Gravity
Gravity anomalies
Gravity data
Inverse problems
Linearity
Lithosphere
Mantle
Mathematical models
Methods
Modelling
Moho
Mountains
Nonlinearity
Numerical study
Objective function
Particle swarm optimization
Potential fields
Sciences of the Universe
Seismic data
Solutions
Swarm intelligence
Upper mantle
title Non‐linear stochastic inversion of gravity data via quantum‐behaved particle swarm optimisation: application to Eurasia–Arabia collision zone (Zagros, Iran)
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T22%3A00%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Non%E2%80%90linear%20stochastic%20inversion%20of%20gravity%20data%20via%20quantum%E2%80%90behaved%20particle%20swarm%20optimisation:%20application%20to%20Eurasia%E2%80%93Arabia%20collision%20zone%20(Zagros,%20Iran)&rft.jtitle=Geophysical%20Prospecting&rft.au=Jamasb,%20Ali&rft.date=2017-12&rft.volume=65&rft.issue=S1&rft.spage=274&rft.epage=294&rft.pages=274-294&rft.issn=0016-8025&rft.eissn=1365-2478&rft_id=info:doi/10.1111/1365-2478.12558&rft_dat=%3Cproquest_hal_p%3E1980706623%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1980706623&rft_id=info:pmid/&rfr_iscdi=true