Non‐linear stochastic inversion of gravity data via quantum‐behaved particle swarm optimisation: application to Eurasia–Arabia collision zone (Zagros, Iran)
ABSTRACT Potential field data such as geoid and gravity anomalies are globally available and offer valuable information about the Earth's lithosphere especially in areas where seismic data coverage is sparse. For instance, non‐linear inversion of Bouguer anomalies could be used to estimate the...
Gespeichert in:
Veröffentlicht in: | Geophysical Prospecting 2017-12, Vol.65 (S1), p.274-294 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 294 |
---|---|
container_issue | S1 |
container_start_page | 274 |
container_title | Geophysical Prospecting |
container_volume | 65 |
creator | Jamasb, Ali Motavalli‐Anbaran, Seyed‐Hani Zeyen, Hermann |
description | ABSTRACT
Potential field data such as geoid and gravity anomalies are globally available and offer valuable information about the Earth's lithosphere especially in areas where seismic data coverage is sparse. For instance, non‐linear inversion of Bouguer anomalies could be used to estimate the crustal structures including variations of the crustal density and of the depth of the crust–mantle boundary, that is, Moho. However, due to non‐linearity of this inverse problem, classical inversion methods would fail whenever there is no reliable initial model. Swarm intelligence algorithms, such as particle swarm optimisation, are a promising alternative to classical inversion methods because the quality of their solutions does not depend on the initial model; they do not use the derivatives of the objective function, hence allowing the use of L1 norm; and finally, they are global search methods, meaning, the problem could be non‐convex. In this paper, quantum‐behaved particle swarm, a probabilistic swarm intelligence‐like algorithm, is used to solve the non‐linear gravity inverse problem. The method is first successfully tested on a realistic synthetic crustal model with a linear vertical density gradient and lateral density and depth variations at the base of crust in the presence of white Gaussian noise. Then, it is applied to the EIGEN 6c4, a combined global gravity model, to estimate the depth to the base of the crust and the mean density contrast between the crust and the upper‐mantle lithosphere in the Eurasia–Arabia continental collision zone along a 400 km profile crossing the Zagros Mountains (Iran). The results agree well with previously published works including both seismic and potential field studies. |
doi_str_mv | 10.1111/1365-2478.12558 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01791073v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1980706623</sourcerecordid><originalsourceid>FETCH-LOGICAL-a3728-9aed03aaf99c82af5d6815ce4292421003c43b82505d4b92638964afdd874a0d3</originalsourceid><addsrcrecordid>eNqFkc9q3DAQxkVJoZuk514FvSQQb_THsuXcliVNFpY0lPbSi5i15ayC13Ik2WF7yiMU-gZ5tDxJtOuSa-YiZvh932j4EPpCyZTGOqc8EwlLczmlTAj5AU3eJgdoQgjNEkmY-IQOvb8nhBMh0gl6vrHty9PfxrQaHPbBlmvwwZTYtIN23tgW2xrfORhM2OIKAuDBAH7ooQ39JipXeg2DrnAHLsoajf0juA22XTAb4yFEhwsMXdeYct_gYPFl78AbeHn6N3OwinalbRqzX_bHthqf_IY7Z_0ZXjhoT4_Rxxoarz__f4_Qr2-XP-fXyfL71WI-WybAcyaTAnRFOEBdFKVkUIsqk1SUOmUFSxmNF5cpX0kmiKjSVcEyLosshbqqZJ4CqfgROh1919CozpkNuK2yYNT1bKl2M0LzgpKcDzSyX0e2c_ah1z6oe9u7Nn5P0UKSnGQZ45E6H6kyXuOdrt9sKVG70NQuIrWLSO1DiwoxKh5No7fv4erq9seoewUGcJ20</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1980706623</pqid></control><display><type>article</type><title>Non‐linear stochastic inversion of gravity data via quantum‐behaved particle swarm optimisation: application to Eurasia–Arabia collision zone (Zagros, Iran)</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Jamasb, Ali ; Motavalli‐Anbaran, Seyed‐Hani ; Zeyen, Hermann</creator><creatorcontrib>Jamasb, Ali ; Motavalli‐Anbaran, Seyed‐Hani ; Zeyen, Hermann</creatorcontrib><description>ABSTRACT
Potential field data such as geoid and gravity anomalies are globally available and offer valuable information about the Earth's lithosphere especially in areas where seismic data coverage is sparse. For instance, non‐linear inversion of Bouguer anomalies could be used to estimate the crustal structures including variations of the crustal density and of the depth of the crust–mantle boundary, that is, Moho. However, due to non‐linearity of this inverse problem, classical inversion methods would fail whenever there is no reliable initial model. Swarm intelligence algorithms, such as particle swarm optimisation, are a promising alternative to classical inversion methods because the quality of their solutions does not depend on the initial model; they do not use the derivatives of the objective function, hence allowing the use of L1 norm; and finally, they are global search methods, meaning, the problem could be non‐convex. In this paper, quantum‐behaved particle swarm, a probabilistic swarm intelligence‐like algorithm, is used to solve the non‐linear gravity inverse problem. The method is first successfully tested on a realistic synthetic crustal model with a linear vertical density gradient and lateral density and depth variations at the base of crust in the presence of white Gaussian noise. Then, it is applied to the EIGEN 6c4, a combined global gravity model, to estimate the depth to the base of the crust and the mean density contrast between the crust and the upper‐mantle lithosphere in the Eurasia–Arabia continental collision zone along a 400 km profile crossing the Zagros Mountains (Iran). The results agree well with previously published works including both seismic and potential field studies.</description><identifier>ISSN: 0016-8025</identifier><identifier>EISSN: 1365-2478</identifier><identifier>DOI: 10.1111/1365-2478.12558</identifier><language>eng</language><publisher>Houten: Wiley Subscription Services, Inc</publisher><subject>Algorithms ; Anomalies ; Bouguer anomalies ; Density ; Density gradients ; Depth ; Earth ; Earth mantle ; Earth Sciences ; Geoid ; Gravitation ; Gravity ; Gravity anomalies ; Gravity data ; Inverse problems ; Linearity ; Lithosphere ; Mantle ; Mathematical models ; Methods ; Modelling ; Moho ; Mountains ; Nonlinearity ; Numerical study ; Objective function ; Particle swarm optimization ; Potential fields ; Sciences of the Universe ; Seismic data ; Solutions ; Swarm intelligence ; Upper mantle</subject><ispartof>Geophysical Prospecting, 2017-12, Vol.65 (S1), p.274-294</ispartof><rights>2017 European Association of Geoscientists & Engineers</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a3728-9aed03aaf99c82af5d6815ce4292421003c43b82505d4b92638964afdd874a0d3</citedby><cites>FETCH-LOGICAL-a3728-9aed03aaf99c82af5d6815ce4292421003c43b82505d4b92638964afdd874a0d3</cites><orcidid>0000-0003-1820-9032</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2F1365-2478.12558$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2F1365-2478.12558$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,776,780,881,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://hal.science/hal-01791073$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Jamasb, Ali</creatorcontrib><creatorcontrib>Motavalli‐Anbaran, Seyed‐Hani</creatorcontrib><creatorcontrib>Zeyen, Hermann</creatorcontrib><title>Non‐linear stochastic inversion of gravity data via quantum‐behaved particle swarm optimisation: application to Eurasia–Arabia collision zone (Zagros, Iran)</title><title>Geophysical Prospecting</title><description>ABSTRACT
Potential field data such as geoid and gravity anomalies are globally available and offer valuable information about the Earth's lithosphere especially in areas where seismic data coverage is sparse. For instance, non‐linear inversion of Bouguer anomalies could be used to estimate the crustal structures including variations of the crustal density and of the depth of the crust–mantle boundary, that is, Moho. However, due to non‐linearity of this inverse problem, classical inversion methods would fail whenever there is no reliable initial model. Swarm intelligence algorithms, such as particle swarm optimisation, are a promising alternative to classical inversion methods because the quality of their solutions does not depend on the initial model; they do not use the derivatives of the objective function, hence allowing the use of L1 norm; and finally, they are global search methods, meaning, the problem could be non‐convex. In this paper, quantum‐behaved particle swarm, a probabilistic swarm intelligence‐like algorithm, is used to solve the non‐linear gravity inverse problem. The method is first successfully tested on a realistic synthetic crustal model with a linear vertical density gradient and lateral density and depth variations at the base of crust in the presence of white Gaussian noise. Then, it is applied to the EIGEN 6c4, a combined global gravity model, to estimate the depth to the base of the crust and the mean density contrast between the crust and the upper‐mantle lithosphere in the Eurasia–Arabia continental collision zone along a 400 km profile crossing the Zagros Mountains (Iran). The results agree well with previously published works including both seismic and potential field studies.</description><subject>Algorithms</subject><subject>Anomalies</subject><subject>Bouguer anomalies</subject><subject>Density</subject><subject>Density gradients</subject><subject>Depth</subject><subject>Earth</subject><subject>Earth mantle</subject><subject>Earth Sciences</subject><subject>Geoid</subject><subject>Gravitation</subject><subject>Gravity</subject><subject>Gravity anomalies</subject><subject>Gravity data</subject><subject>Inverse problems</subject><subject>Linearity</subject><subject>Lithosphere</subject><subject>Mantle</subject><subject>Mathematical models</subject><subject>Methods</subject><subject>Modelling</subject><subject>Moho</subject><subject>Mountains</subject><subject>Nonlinearity</subject><subject>Numerical study</subject><subject>Objective function</subject><subject>Particle swarm optimization</subject><subject>Potential fields</subject><subject>Sciences of the Universe</subject><subject>Seismic data</subject><subject>Solutions</subject><subject>Swarm intelligence</subject><subject>Upper mantle</subject><issn>0016-8025</issn><issn>1365-2478</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqFkc9q3DAQxkVJoZuk514FvSQQb_THsuXcliVNFpY0lPbSi5i15ayC13Ik2WF7yiMU-gZ5tDxJtOuSa-YiZvh932j4EPpCyZTGOqc8EwlLczmlTAj5AU3eJgdoQgjNEkmY-IQOvb8nhBMh0gl6vrHty9PfxrQaHPbBlmvwwZTYtIN23tgW2xrfORhM2OIKAuDBAH7ooQ39JipXeg2DrnAHLsoajf0juA22XTAb4yFEhwsMXdeYct_gYPFl78AbeHn6N3OwinalbRqzX_bHthqf_IY7Z_0ZXjhoT4_Rxxoarz__f4_Qr2-XP-fXyfL71WI-WybAcyaTAnRFOEBdFKVkUIsqk1SUOmUFSxmNF5cpX0kmiKjSVcEyLosshbqqZJ4CqfgROh1919CozpkNuK2yYNT1bKl2M0LzgpKcDzSyX0e2c_ah1z6oe9u7Nn5P0UKSnGQZ45E6H6kyXuOdrt9sKVG70NQuIrWLSO1DiwoxKh5No7fv4erq9seoewUGcJ20</recordid><startdate>201712</startdate><enddate>201712</enddate><creator>Jamasb, Ali</creator><creator>Motavalli‐Anbaran, Seyed‐Hani</creator><creator>Zeyen, Hermann</creator><general>Wiley Subscription Services, Inc</general><general>Wiley</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>F1W</scope><scope>FR3</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0003-1820-9032</orcidid></search><sort><creationdate>201712</creationdate><title>Non‐linear stochastic inversion of gravity data via quantum‐behaved particle swarm optimisation: application to Eurasia–Arabia collision zone (Zagros, Iran)</title><author>Jamasb, Ali ; Motavalli‐Anbaran, Seyed‐Hani ; Zeyen, Hermann</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a3728-9aed03aaf99c82af5d6815ce4292421003c43b82505d4b92638964afdd874a0d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Algorithms</topic><topic>Anomalies</topic><topic>Bouguer anomalies</topic><topic>Density</topic><topic>Density gradients</topic><topic>Depth</topic><topic>Earth</topic><topic>Earth mantle</topic><topic>Earth Sciences</topic><topic>Geoid</topic><topic>Gravitation</topic><topic>Gravity</topic><topic>Gravity anomalies</topic><topic>Gravity data</topic><topic>Inverse problems</topic><topic>Linearity</topic><topic>Lithosphere</topic><topic>Mantle</topic><topic>Mathematical models</topic><topic>Methods</topic><topic>Modelling</topic><topic>Moho</topic><topic>Mountains</topic><topic>Nonlinearity</topic><topic>Numerical study</topic><topic>Objective function</topic><topic>Particle swarm optimization</topic><topic>Potential fields</topic><topic>Sciences of the Universe</topic><topic>Seismic data</topic><topic>Solutions</topic><topic>Swarm intelligence</topic><topic>Upper mantle</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jamasb, Ali</creatorcontrib><creatorcontrib>Motavalli‐Anbaran, Seyed‐Hani</creatorcontrib><creatorcontrib>Zeyen, Hermann</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Geophysical Prospecting</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jamasb, Ali</au><au>Motavalli‐Anbaran, Seyed‐Hani</au><au>Zeyen, Hermann</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Non‐linear stochastic inversion of gravity data via quantum‐behaved particle swarm optimisation: application to Eurasia–Arabia collision zone (Zagros, Iran)</atitle><jtitle>Geophysical Prospecting</jtitle><date>2017-12</date><risdate>2017</risdate><volume>65</volume><issue>S1</issue><spage>274</spage><epage>294</epage><pages>274-294</pages><issn>0016-8025</issn><eissn>1365-2478</eissn><abstract>ABSTRACT
Potential field data such as geoid and gravity anomalies are globally available and offer valuable information about the Earth's lithosphere especially in areas where seismic data coverage is sparse. For instance, non‐linear inversion of Bouguer anomalies could be used to estimate the crustal structures including variations of the crustal density and of the depth of the crust–mantle boundary, that is, Moho. However, due to non‐linearity of this inverse problem, classical inversion methods would fail whenever there is no reliable initial model. Swarm intelligence algorithms, such as particle swarm optimisation, are a promising alternative to classical inversion methods because the quality of their solutions does not depend on the initial model; they do not use the derivatives of the objective function, hence allowing the use of L1 norm; and finally, they are global search methods, meaning, the problem could be non‐convex. In this paper, quantum‐behaved particle swarm, a probabilistic swarm intelligence‐like algorithm, is used to solve the non‐linear gravity inverse problem. The method is first successfully tested on a realistic synthetic crustal model with a linear vertical density gradient and lateral density and depth variations at the base of crust in the presence of white Gaussian noise. Then, it is applied to the EIGEN 6c4, a combined global gravity model, to estimate the depth to the base of the crust and the mean density contrast between the crust and the upper‐mantle lithosphere in the Eurasia–Arabia continental collision zone along a 400 km profile crossing the Zagros Mountains (Iran). The results agree well with previously published works including both seismic and potential field studies.</abstract><cop>Houten</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1111/1365-2478.12558</doi><tpages>21</tpages><orcidid>https://orcid.org/0000-0003-1820-9032</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0016-8025 |
ispartof | Geophysical Prospecting, 2017-12, Vol.65 (S1), p.274-294 |
issn | 0016-8025 1365-2478 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_01791073v1 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Algorithms Anomalies Bouguer anomalies Density Density gradients Depth Earth Earth mantle Earth Sciences Geoid Gravitation Gravity Gravity anomalies Gravity data Inverse problems Linearity Lithosphere Mantle Mathematical models Methods Modelling Moho Mountains Nonlinearity Numerical study Objective function Particle swarm optimization Potential fields Sciences of the Universe Seismic data Solutions Swarm intelligence Upper mantle |
title | Non‐linear stochastic inversion of gravity data via quantum‐behaved particle swarm optimisation: application to Eurasia–Arabia collision zone (Zagros, Iran) |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T22%3A00%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Non%E2%80%90linear%20stochastic%20inversion%20of%20gravity%20data%20via%20quantum%E2%80%90behaved%20particle%20swarm%20optimisation:%20application%20to%20Eurasia%E2%80%93Arabia%20collision%20zone%20(Zagros,%20Iran)&rft.jtitle=Geophysical%20Prospecting&rft.au=Jamasb,%20Ali&rft.date=2017-12&rft.volume=65&rft.issue=S1&rft.spage=274&rft.epage=294&rft.pages=274-294&rft.issn=0016-8025&rft.eissn=1365-2478&rft_id=info:doi/10.1111/1365-2478.12558&rft_dat=%3Cproquest_hal_p%3E1980706623%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1980706623&rft_id=info:pmid/&rfr_iscdi=true |