Fully Integrated Interferometry-Based Reflectometer for High-Impedance Instrumentation

Microwave imaging of nanoelectronic devices has turned a simple reflection coefficient measurement, usually carried out by a 50- \Omega vector-network analyzer, into a high-impedance instrumentation challenge. Interferometry-based reflectometers (IBR) have been found to be successful solutions in a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on microwave theory and techniques 2018-08, Vol.66 (8), p.3901-3908
Hauptverfasser: Maris Ferreira, Pietro, Donche, Cora, Avignon-Meseldzija, Emilie, Quemerais, Thomas, Gianesello, Frederic, Gloria, Daniel, Lasri, Tuami, Dambrine, Gilles, Gaquiere, Christophe
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3908
container_issue 8
container_start_page 3901
container_title IEEE transactions on microwave theory and techniques
container_volume 66
creator Maris Ferreira, Pietro
Donche, Cora
Avignon-Meseldzija, Emilie
Quemerais, Thomas
Gianesello, Frederic
Gloria, Daniel
Lasri, Tuami
Dambrine, Gilles
Gaquiere, Christophe
description Microwave imaging of nanoelectronic devices has turned a simple reflection coefficient measurement, usually carried out by a 50- \Omega vector-network analyzer, into a high-impedance instrumentation challenge. Interferometry-based reflectometers (IBR) have been found to be successful solutions in addressing this challenge. However, such solutions do not consider instrumentation of high impedance and high frequency as well as minimization of environment variations in a comprehensive manner. In this paper, these aspects are addressed jointly through the proposal of a fully integrated IBR in the STMicroelectronics BiCMOS 55-nm technology. Three varactor samples having a capacitance ranging from 0.65 to 0.95 fF are measured at 17.6 GHz for demonstration. The fully integrated IBR achieved a magnitude error below −35 dB, a phase error below 0.03°, and an accuracy better than 59.7 aF. Moreover, C - V slope measurement error is better than 2.8 aF, which is ten times smaller than found in the state-of-the-art IBR. Such betterment is explained by the monolithic integration of IBR and device-under-test as implemented in this paper.
doi_str_mv 10.1109/TMTT.2018.2831699
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01789805v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8359102</ieee_id><sourcerecordid>2117115070</sourcerecordid><originalsourceid>FETCH-LOGICAL-c370t-97a6057ebe1e3f012e93649eb1a1d75f11d32706a4d6f7ae97854f713c0914443</originalsourceid><addsrcrecordid>eNo9kE9Lw0AQxRdRsFY_gHgpePKQOpPNZrPHWqwtVASpXpdtMtum5E_dbIV-exNTepqZN783DI-xe4QxIqjn1ftqNQ4Bk3GYcIyVumADFEIGKpZwyQbQrgIVJXDNbppm146RgGTAvmeHojiOFpWnjTOesv_WWXJ1Sd4dgxfTtOIn2YJS32nkRrZ2o3m-2QaLck-ZqVJqXY13h5Iqb3xeV7fsypqiobtTHbKv2etqOg-WH2-L6WQZpFyCD5Q0MQhJa0LiFjAkxeNI0RoNZlJYxIyHEmITZbGVhpRMRGQl8hQURlHEh-ypv7s1hd67vDTuqGuT6_lkqTsNUCYqAfGLLfvYs3tX_xyo8XpXH1zVvqdDRIkoQEJLYU-lrm4aR_Z8FkF3Uesuat1FrU9Rt56H3pMT0ZlPuFAIIf8DulB5jQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2117115070</pqid></control><display><type>article</type><title>Fully Integrated Interferometry-Based Reflectometer for High-Impedance Instrumentation</title><source>IEEE Electronic Library (IEL)</source><creator>Maris Ferreira, Pietro ; Donche, Cora ; Avignon-Meseldzija, Emilie ; Quemerais, Thomas ; Gianesello, Frederic ; Gloria, Daniel ; Lasri, Tuami ; Dambrine, Gilles ; Gaquiere, Christophe</creator><creatorcontrib>Maris Ferreira, Pietro ; Donche, Cora ; Avignon-Meseldzija, Emilie ; Quemerais, Thomas ; Gianesello, Frederic ; Gloria, Daniel ; Lasri, Tuami ; Dambrine, Gilles ; Gaquiere, Christophe</creatorcontrib><description><![CDATA[Microwave imaging of nanoelectronic devices has turned a simple reflection coefficient measurement, usually carried out by a 50-<inline-formula> <tex-math notation="LaTeX">\Omega </tex-math></inline-formula> vector-network analyzer, into a high-impedance instrumentation challenge. Interferometry-based reflectometers (IBR) have been found to be successful solutions in addressing this challenge. However, such solutions do not consider instrumentation of high impedance and high frequency as well as minimization of environment variations in a comprehensive manner. In this paper, these aspects are addressed jointly through the proposal of a fully integrated IBR in the STMicroelectronics BiCMOS 55-nm technology. Three varactor samples having a capacitance ranging from 0.65 to 0.95 fF are measured at 17.6 GHz for demonstration. The fully integrated IBR achieved a magnitude error below −35 dB, a phase error below 0.03°, and an accuracy better than 59.7 aF. Moreover, <inline-formula> <tex-math notation="LaTeX">C </tex-math></inline-formula>-<inline-formula> <tex-math notation="LaTeX">V </tex-math></inline-formula> slope measurement error is better than 2.8 aF, which is ten times smaller than found in the state-of-the-art IBR. Such betterment is explained by the monolithic integration of IBR and device-under-test as implemented in this paper.]]></description><identifier>ISSN: 0018-9480</identifier><identifier>EISSN: 1557-9670</identifier><identifier>DOI: 10.1109/TMTT.2018.2831699</identifier><identifier>CODEN: IETMAB</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Audio frequencies ; BiCMOS 55 nm ; Dielectric measurement ; Electronics ; Engineering Sciences ; Error analysis ; Errors ; Frequency measurement ; fully integrated instrumentation ; High impedance ; high-impedance microwave ; Instruments ; Interferometry ; interferometry-based reflectometer (IBR) ; Micro and nanotechnologies ; Microelectronics ; Microwave imaging ; Microwave theory and techniques ; Nanoelectronics ; Nanotechnology devices ; Network analysers ; Phase error ; Phase measurement ; Reflectance ; Reflectometers ; sub-fF MOS varactor ; Varactors</subject><ispartof>IEEE transactions on microwave theory and techniques, 2018-08, Vol.66 (8), p.3901-3908</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c370t-97a6057ebe1e3f012e93649eb1a1d75f11d32706a4d6f7ae97854f713c0914443</citedby><cites>FETCH-LOGICAL-c370t-97a6057ebe1e3f012e93649eb1a1d75f11d32706a4d6f7ae97854f713c0914443</cites><orcidid>0000-0002-0038-9058 ; 0000-0003-3082-2489 ; 0000-0001-5268-9223</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8359102$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,776,780,792,881,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8359102$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://hal.science/hal-01789805$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Maris Ferreira, Pietro</creatorcontrib><creatorcontrib>Donche, Cora</creatorcontrib><creatorcontrib>Avignon-Meseldzija, Emilie</creatorcontrib><creatorcontrib>Quemerais, Thomas</creatorcontrib><creatorcontrib>Gianesello, Frederic</creatorcontrib><creatorcontrib>Gloria, Daniel</creatorcontrib><creatorcontrib>Lasri, Tuami</creatorcontrib><creatorcontrib>Dambrine, Gilles</creatorcontrib><creatorcontrib>Gaquiere, Christophe</creatorcontrib><title>Fully Integrated Interferometry-Based Reflectometer for High-Impedance Instrumentation</title><title>IEEE transactions on microwave theory and techniques</title><addtitle>TMTT</addtitle><description><![CDATA[Microwave imaging of nanoelectronic devices has turned a simple reflection coefficient measurement, usually carried out by a 50-<inline-formula> <tex-math notation="LaTeX">\Omega </tex-math></inline-formula> vector-network analyzer, into a high-impedance instrumentation challenge. Interferometry-based reflectometers (IBR) have been found to be successful solutions in addressing this challenge. However, such solutions do not consider instrumentation of high impedance and high frequency as well as minimization of environment variations in a comprehensive manner. In this paper, these aspects are addressed jointly through the proposal of a fully integrated IBR in the STMicroelectronics BiCMOS 55-nm technology. Three varactor samples having a capacitance ranging from 0.65 to 0.95 fF are measured at 17.6 GHz for demonstration. The fully integrated IBR achieved a magnitude error below −35 dB, a phase error below 0.03°, and an accuracy better than 59.7 aF. Moreover, <inline-formula> <tex-math notation="LaTeX">C </tex-math></inline-formula>-<inline-formula> <tex-math notation="LaTeX">V </tex-math></inline-formula> slope measurement error is better than 2.8 aF, which is ten times smaller than found in the state-of-the-art IBR. Such betterment is explained by the monolithic integration of IBR and device-under-test as implemented in this paper.]]></description><subject>Audio frequencies</subject><subject>BiCMOS 55 nm</subject><subject>Dielectric measurement</subject><subject>Electronics</subject><subject>Engineering Sciences</subject><subject>Error analysis</subject><subject>Errors</subject><subject>Frequency measurement</subject><subject>fully integrated instrumentation</subject><subject>High impedance</subject><subject>high-impedance microwave</subject><subject>Instruments</subject><subject>Interferometry</subject><subject>interferometry-based reflectometer (IBR)</subject><subject>Micro and nanotechnologies</subject><subject>Microelectronics</subject><subject>Microwave imaging</subject><subject>Microwave theory and techniques</subject><subject>Nanoelectronics</subject><subject>Nanotechnology devices</subject><subject>Network analysers</subject><subject>Phase error</subject><subject>Phase measurement</subject><subject>Reflectance</subject><subject>Reflectometers</subject><subject>sub-fF MOS varactor</subject><subject>Varactors</subject><issn>0018-9480</issn><issn>1557-9670</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE9Lw0AQxRdRsFY_gHgpePKQOpPNZrPHWqwtVASpXpdtMtum5E_dbIV-exNTepqZN783DI-xe4QxIqjn1ftqNQ4Bk3GYcIyVumADFEIGKpZwyQbQrgIVJXDNbppm146RgGTAvmeHojiOFpWnjTOesv_WWXJ1Sd4dgxfTtOIn2YJS32nkRrZ2o3m-2QaLck-ZqVJqXY13h5Iqb3xeV7fsypqiobtTHbKv2etqOg-WH2-L6WQZpFyCD5Q0MQhJa0LiFjAkxeNI0RoNZlJYxIyHEmITZbGVhpRMRGQl8hQURlHEh-ypv7s1hd67vDTuqGuT6_lkqTsNUCYqAfGLLfvYs3tX_xyo8XpXH1zVvqdDRIkoQEJLYU-lrm4aR_Z8FkF3Uesuat1FrU9Rt56H3pMT0ZlPuFAIIf8DulB5jQ</recordid><startdate>20180801</startdate><enddate>20180801</enddate><creator>Maris Ferreira, Pietro</creator><creator>Donche, Cora</creator><creator>Avignon-Meseldzija, Emilie</creator><creator>Quemerais, Thomas</creator><creator>Gianesello, Frederic</creator><creator>Gloria, Daniel</creator><creator>Lasri, Tuami</creator><creator>Dambrine, Gilles</creator><creator>Gaquiere, Christophe</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><general>Institute of Electrical and Electronics Engineers</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-0038-9058</orcidid><orcidid>https://orcid.org/0000-0003-3082-2489</orcidid><orcidid>https://orcid.org/0000-0001-5268-9223</orcidid></search><sort><creationdate>20180801</creationdate><title>Fully Integrated Interferometry-Based Reflectometer for High-Impedance Instrumentation</title><author>Maris Ferreira, Pietro ; Donche, Cora ; Avignon-Meseldzija, Emilie ; Quemerais, Thomas ; Gianesello, Frederic ; Gloria, Daniel ; Lasri, Tuami ; Dambrine, Gilles ; Gaquiere, Christophe</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c370t-97a6057ebe1e3f012e93649eb1a1d75f11d32706a4d6f7ae97854f713c0914443</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Audio frequencies</topic><topic>BiCMOS 55 nm</topic><topic>Dielectric measurement</topic><topic>Electronics</topic><topic>Engineering Sciences</topic><topic>Error analysis</topic><topic>Errors</topic><topic>Frequency measurement</topic><topic>fully integrated instrumentation</topic><topic>High impedance</topic><topic>high-impedance microwave</topic><topic>Instruments</topic><topic>Interferometry</topic><topic>interferometry-based reflectometer (IBR)</topic><topic>Micro and nanotechnologies</topic><topic>Microelectronics</topic><topic>Microwave imaging</topic><topic>Microwave theory and techniques</topic><topic>Nanoelectronics</topic><topic>Nanotechnology devices</topic><topic>Network analysers</topic><topic>Phase error</topic><topic>Phase measurement</topic><topic>Reflectance</topic><topic>Reflectometers</topic><topic>sub-fF MOS varactor</topic><topic>Varactors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Maris Ferreira, Pietro</creatorcontrib><creatorcontrib>Donche, Cora</creatorcontrib><creatorcontrib>Avignon-Meseldzija, Emilie</creatorcontrib><creatorcontrib>Quemerais, Thomas</creatorcontrib><creatorcontrib>Gianesello, Frederic</creatorcontrib><creatorcontrib>Gloria, Daniel</creatorcontrib><creatorcontrib>Lasri, Tuami</creatorcontrib><creatorcontrib>Dambrine, Gilles</creatorcontrib><creatorcontrib>Gaquiere, Christophe</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>IEEE transactions on microwave theory and techniques</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Maris Ferreira, Pietro</au><au>Donche, Cora</au><au>Avignon-Meseldzija, Emilie</au><au>Quemerais, Thomas</au><au>Gianesello, Frederic</au><au>Gloria, Daniel</au><au>Lasri, Tuami</au><au>Dambrine, Gilles</au><au>Gaquiere, Christophe</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fully Integrated Interferometry-Based Reflectometer for High-Impedance Instrumentation</atitle><jtitle>IEEE transactions on microwave theory and techniques</jtitle><stitle>TMTT</stitle><date>2018-08-01</date><risdate>2018</risdate><volume>66</volume><issue>8</issue><spage>3901</spage><epage>3908</epage><pages>3901-3908</pages><issn>0018-9480</issn><eissn>1557-9670</eissn><coden>IETMAB</coden><abstract><![CDATA[Microwave imaging of nanoelectronic devices has turned a simple reflection coefficient measurement, usually carried out by a 50-<inline-formula> <tex-math notation="LaTeX">\Omega </tex-math></inline-formula> vector-network analyzer, into a high-impedance instrumentation challenge. Interferometry-based reflectometers (IBR) have been found to be successful solutions in addressing this challenge. However, such solutions do not consider instrumentation of high impedance and high frequency as well as minimization of environment variations in a comprehensive manner. In this paper, these aspects are addressed jointly through the proposal of a fully integrated IBR in the STMicroelectronics BiCMOS 55-nm technology. Three varactor samples having a capacitance ranging from 0.65 to 0.95 fF are measured at 17.6 GHz for demonstration. The fully integrated IBR achieved a magnitude error below −35 dB, a phase error below 0.03°, and an accuracy better than 59.7 aF. Moreover, <inline-formula> <tex-math notation="LaTeX">C </tex-math></inline-formula>-<inline-formula> <tex-math notation="LaTeX">V </tex-math></inline-formula> slope measurement error is better than 2.8 aF, which is ten times smaller than found in the state-of-the-art IBR. Such betterment is explained by the monolithic integration of IBR and device-under-test as implemented in this paper.]]></abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TMTT.2018.2831699</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-0038-9058</orcidid><orcidid>https://orcid.org/0000-0003-3082-2489</orcidid><orcidid>https://orcid.org/0000-0001-5268-9223</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9480
ispartof IEEE transactions on microwave theory and techniques, 2018-08, Vol.66 (8), p.3901-3908
issn 0018-9480
1557-9670
language eng
recordid cdi_hal_primary_oai_HAL_hal_01789805v1
source IEEE Electronic Library (IEL)
subjects Audio frequencies
BiCMOS 55 nm
Dielectric measurement
Electronics
Engineering Sciences
Error analysis
Errors
Frequency measurement
fully integrated instrumentation
High impedance
high-impedance microwave
Instruments
Interferometry
interferometry-based reflectometer (IBR)
Micro and nanotechnologies
Microelectronics
Microwave imaging
Microwave theory and techniques
Nanoelectronics
Nanotechnology devices
Network analysers
Phase error
Phase measurement
Reflectance
Reflectometers
sub-fF MOS varactor
Varactors
title Fully Integrated Interferometry-Based Reflectometer for High-Impedance Instrumentation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T04%3A18%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fully%20Integrated%20Interferometry-Based%20Reflectometer%20for%20High-Impedance%20Instrumentation&rft.jtitle=IEEE%20transactions%20on%20microwave%20theory%20and%20techniques&rft.au=Maris%20Ferreira,%20Pietro&rft.date=2018-08-01&rft.volume=66&rft.issue=8&rft.spage=3901&rft.epage=3908&rft.pages=3901-3908&rft.issn=0018-9480&rft.eissn=1557-9670&rft.coden=IETMAB&rft_id=info:doi/10.1109/TMTT.2018.2831699&rft_dat=%3Cproquest_RIE%3E2117115070%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2117115070&rft_id=info:pmid/&rft_ieee_id=8359102&rfr_iscdi=true