Fully Integrated Interferometry-Based Reflectometer for High-Impedance Instrumentation
Microwave imaging of nanoelectronic devices has turned a simple reflection coefficient measurement, usually carried out by a 50- \Omega vector-network analyzer, into a high-impedance instrumentation challenge. Interferometry-based reflectometers (IBR) have been found to be successful solutions in a...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on microwave theory and techniques 2018-08, Vol.66 (8), p.3901-3908 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3908 |
---|---|
container_issue | 8 |
container_start_page | 3901 |
container_title | IEEE transactions on microwave theory and techniques |
container_volume | 66 |
creator | Maris Ferreira, Pietro Donche, Cora Avignon-Meseldzija, Emilie Quemerais, Thomas Gianesello, Frederic Gloria, Daniel Lasri, Tuami Dambrine, Gilles Gaquiere, Christophe |
description | Microwave imaging of nanoelectronic devices has turned a simple reflection coefficient measurement, usually carried out by a 50- \Omega vector-network analyzer, into a high-impedance instrumentation challenge. Interferometry-based reflectometers (IBR) have been found to be successful solutions in addressing this challenge. However, such solutions do not consider instrumentation of high impedance and high frequency as well as minimization of environment variations in a comprehensive manner. In this paper, these aspects are addressed jointly through the proposal of a fully integrated IBR in the STMicroelectronics BiCMOS 55-nm technology. Three varactor samples having a capacitance ranging from 0.65 to 0.95 fF are measured at 17.6 GHz for demonstration. The fully integrated IBR achieved a magnitude error below −35 dB, a phase error below 0.03°, and an accuracy better than 59.7 aF. Moreover, C - V slope measurement error is better than 2.8 aF, which is ten times smaller than found in the state-of-the-art IBR. Such betterment is explained by the monolithic integration of IBR and device-under-test as implemented in this paper. |
doi_str_mv | 10.1109/TMTT.2018.2831699 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01789805v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8359102</ieee_id><sourcerecordid>2117115070</sourcerecordid><originalsourceid>FETCH-LOGICAL-c370t-97a6057ebe1e3f012e93649eb1a1d75f11d32706a4d6f7ae97854f713c0914443</originalsourceid><addsrcrecordid>eNo9kE9Lw0AQxRdRsFY_gHgpePKQOpPNZrPHWqwtVASpXpdtMtum5E_dbIV-exNTepqZN783DI-xe4QxIqjn1ftqNQ4Bk3GYcIyVumADFEIGKpZwyQbQrgIVJXDNbppm146RgGTAvmeHojiOFpWnjTOesv_WWXJ1Sd4dgxfTtOIn2YJS32nkRrZ2o3m-2QaLck-ZqVJqXY13h5Iqb3xeV7fsypqiobtTHbKv2etqOg-WH2-L6WQZpFyCD5Q0MQhJa0LiFjAkxeNI0RoNZlJYxIyHEmITZbGVhpRMRGQl8hQURlHEh-ypv7s1hd67vDTuqGuT6_lkqTsNUCYqAfGLLfvYs3tX_xyo8XpXH1zVvqdDRIkoQEJLYU-lrm4aR_Z8FkF3Uesuat1FrU9Rt56H3pMT0ZlPuFAIIf8DulB5jQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2117115070</pqid></control><display><type>article</type><title>Fully Integrated Interferometry-Based Reflectometer for High-Impedance Instrumentation</title><source>IEEE Electronic Library (IEL)</source><creator>Maris Ferreira, Pietro ; Donche, Cora ; Avignon-Meseldzija, Emilie ; Quemerais, Thomas ; Gianesello, Frederic ; Gloria, Daniel ; Lasri, Tuami ; Dambrine, Gilles ; Gaquiere, Christophe</creator><creatorcontrib>Maris Ferreira, Pietro ; Donche, Cora ; Avignon-Meseldzija, Emilie ; Quemerais, Thomas ; Gianesello, Frederic ; Gloria, Daniel ; Lasri, Tuami ; Dambrine, Gilles ; Gaquiere, Christophe</creatorcontrib><description><![CDATA[Microwave imaging of nanoelectronic devices has turned a simple reflection coefficient measurement, usually carried out by a 50-<inline-formula> <tex-math notation="LaTeX">\Omega </tex-math></inline-formula> vector-network analyzer, into a high-impedance instrumentation challenge. Interferometry-based reflectometers (IBR) have been found to be successful solutions in addressing this challenge. However, such solutions do not consider instrumentation of high impedance and high frequency as well as minimization of environment variations in a comprehensive manner. In this paper, these aspects are addressed jointly through the proposal of a fully integrated IBR in the STMicroelectronics BiCMOS 55-nm technology. Three varactor samples having a capacitance ranging from 0.65 to 0.95 fF are measured at 17.6 GHz for demonstration. The fully integrated IBR achieved a magnitude error below −35 dB, a phase error below 0.03°, and an accuracy better than 59.7 aF. Moreover, <inline-formula> <tex-math notation="LaTeX">C </tex-math></inline-formula>-<inline-formula> <tex-math notation="LaTeX">V </tex-math></inline-formula> slope measurement error is better than 2.8 aF, which is ten times smaller than found in the state-of-the-art IBR. Such betterment is explained by the monolithic integration of IBR and device-under-test as implemented in this paper.]]></description><identifier>ISSN: 0018-9480</identifier><identifier>EISSN: 1557-9670</identifier><identifier>DOI: 10.1109/TMTT.2018.2831699</identifier><identifier>CODEN: IETMAB</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Audio frequencies ; BiCMOS 55 nm ; Dielectric measurement ; Electronics ; Engineering Sciences ; Error analysis ; Errors ; Frequency measurement ; fully integrated instrumentation ; High impedance ; high-impedance microwave ; Instruments ; Interferometry ; interferometry-based reflectometer (IBR) ; Micro and nanotechnologies ; Microelectronics ; Microwave imaging ; Microwave theory and techniques ; Nanoelectronics ; Nanotechnology devices ; Network analysers ; Phase error ; Phase measurement ; Reflectance ; Reflectometers ; sub-fF MOS varactor ; Varactors</subject><ispartof>IEEE transactions on microwave theory and techniques, 2018-08, Vol.66 (8), p.3901-3908</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c370t-97a6057ebe1e3f012e93649eb1a1d75f11d32706a4d6f7ae97854f713c0914443</citedby><cites>FETCH-LOGICAL-c370t-97a6057ebe1e3f012e93649eb1a1d75f11d32706a4d6f7ae97854f713c0914443</cites><orcidid>0000-0002-0038-9058 ; 0000-0003-3082-2489 ; 0000-0001-5268-9223</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8359102$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,776,780,792,881,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8359102$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://hal.science/hal-01789805$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Maris Ferreira, Pietro</creatorcontrib><creatorcontrib>Donche, Cora</creatorcontrib><creatorcontrib>Avignon-Meseldzija, Emilie</creatorcontrib><creatorcontrib>Quemerais, Thomas</creatorcontrib><creatorcontrib>Gianesello, Frederic</creatorcontrib><creatorcontrib>Gloria, Daniel</creatorcontrib><creatorcontrib>Lasri, Tuami</creatorcontrib><creatorcontrib>Dambrine, Gilles</creatorcontrib><creatorcontrib>Gaquiere, Christophe</creatorcontrib><title>Fully Integrated Interferometry-Based Reflectometer for High-Impedance Instrumentation</title><title>IEEE transactions on microwave theory and techniques</title><addtitle>TMTT</addtitle><description><![CDATA[Microwave imaging of nanoelectronic devices has turned a simple reflection coefficient measurement, usually carried out by a 50-<inline-formula> <tex-math notation="LaTeX">\Omega </tex-math></inline-formula> vector-network analyzer, into a high-impedance instrumentation challenge. Interferometry-based reflectometers (IBR) have been found to be successful solutions in addressing this challenge. However, such solutions do not consider instrumentation of high impedance and high frequency as well as minimization of environment variations in a comprehensive manner. In this paper, these aspects are addressed jointly through the proposal of a fully integrated IBR in the STMicroelectronics BiCMOS 55-nm technology. Three varactor samples having a capacitance ranging from 0.65 to 0.95 fF are measured at 17.6 GHz for demonstration. The fully integrated IBR achieved a magnitude error below −35 dB, a phase error below 0.03°, and an accuracy better than 59.7 aF. Moreover, <inline-formula> <tex-math notation="LaTeX">C </tex-math></inline-formula>-<inline-formula> <tex-math notation="LaTeX">V </tex-math></inline-formula> slope measurement error is better than 2.8 aF, which is ten times smaller than found in the state-of-the-art IBR. Such betterment is explained by the monolithic integration of IBR and device-under-test as implemented in this paper.]]></description><subject>Audio frequencies</subject><subject>BiCMOS 55 nm</subject><subject>Dielectric measurement</subject><subject>Electronics</subject><subject>Engineering Sciences</subject><subject>Error analysis</subject><subject>Errors</subject><subject>Frequency measurement</subject><subject>fully integrated instrumentation</subject><subject>High impedance</subject><subject>high-impedance microwave</subject><subject>Instruments</subject><subject>Interferometry</subject><subject>interferometry-based reflectometer (IBR)</subject><subject>Micro and nanotechnologies</subject><subject>Microelectronics</subject><subject>Microwave imaging</subject><subject>Microwave theory and techniques</subject><subject>Nanoelectronics</subject><subject>Nanotechnology devices</subject><subject>Network analysers</subject><subject>Phase error</subject><subject>Phase measurement</subject><subject>Reflectance</subject><subject>Reflectometers</subject><subject>sub-fF MOS varactor</subject><subject>Varactors</subject><issn>0018-9480</issn><issn>1557-9670</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE9Lw0AQxRdRsFY_gHgpePKQOpPNZrPHWqwtVASpXpdtMtum5E_dbIV-exNTepqZN783DI-xe4QxIqjn1ftqNQ4Bk3GYcIyVumADFEIGKpZwyQbQrgIVJXDNbppm146RgGTAvmeHojiOFpWnjTOesv_WWXJ1Sd4dgxfTtOIn2YJS32nkRrZ2o3m-2QaLck-ZqVJqXY13h5Iqb3xeV7fsypqiobtTHbKv2etqOg-WH2-L6WQZpFyCD5Q0MQhJa0LiFjAkxeNI0RoNZlJYxIyHEmITZbGVhpRMRGQl8hQURlHEh-ypv7s1hd67vDTuqGuT6_lkqTsNUCYqAfGLLfvYs3tX_xyo8XpXH1zVvqdDRIkoQEJLYU-lrm4aR_Z8FkF3Uesuat1FrU9Rt56H3pMT0ZlPuFAIIf8DulB5jQ</recordid><startdate>20180801</startdate><enddate>20180801</enddate><creator>Maris Ferreira, Pietro</creator><creator>Donche, Cora</creator><creator>Avignon-Meseldzija, Emilie</creator><creator>Quemerais, Thomas</creator><creator>Gianesello, Frederic</creator><creator>Gloria, Daniel</creator><creator>Lasri, Tuami</creator><creator>Dambrine, Gilles</creator><creator>Gaquiere, Christophe</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><general>Institute of Electrical and Electronics Engineers</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-0038-9058</orcidid><orcidid>https://orcid.org/0000-0003-3082-2489</orcidid><orcidid>https://orcid.org/0000-0001-5268-9223</orcidid></search><sort><creationdate>20180801</creationdate><title>Fully Integrated Interferometry-Based Reflectometer for High-Impedance Instrumentation</title><author>Maris Ferreira, Pietro ; Donche, Cora ; Avignon-Meseldzija, Emilie ; Quemerais, Thomas ; Gianesello, Frederic ; Gloria, Daniel ; Lasri, Tuami ; Dambrine, Gilles ; Gaquiere, Christophe</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c370t-97a6057ebe1e3f012e93649eb1a1d75f11d32706a4d6f7ae97854f713c0914443</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Audio frequencies</topic><topic>BiCMOS 55 nm</topic><topic>Dielectric measurement</topic><topic>Electronics</topic><topic>Engineering Sciences</topic><topic>Error analysis</topic><topic>Errors</topic><topic>Frequency measurement</topic><topic>fully integrated instrumentation</topic><topic>High impedance</topic><topic>high-impedance microwave</topic><topic>Instruments</topic><topic>Interferometry</topic><topic>interferometry-based reflectometer (IBR)</topic><topic>Micro and nanotechnologies</topic><topic>Microelectronics</topic><topic>Microwave imaging</topic><topic>Microwave theory and techniques</topic><topic>Nanoelectronics</topic><topic>Nanotechnology devices</topic><topic>Network analysers</topic><topic>Phase error</topic><topic>Phase measurement</topic><topic>Reflectance</topic><topic>Reflectometers</topic><topic>sub-fF MOS varactor</topic><topic>Varactors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Maris Ferreira, Pietro</creatorcontrib><creatorcontrib>Donche, Cora</creatorcontrib><creatorcontrib>Avignon-Meseldzija, Emilie</creatorcontrib><creatorcontrib>Quemerais, Thomas</creatorcontrib><creatorcontrib>Gianesello, Frederic</creatorcontrib><creatorcontrib>Gloria, Daniel</creatorcontrib><creatorcontrib>Lasri, Tuami</creatorcontrib><creatorcontrib>Dambrine, Gilles</creatorcontrib><creatorcontrib>Gaquiere, Christophe</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>IEEE transactions on microwave theory and techniques</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Maris Ferreira, Pietro</au><au>Donche, Cora</au><au>Avignon-Meseldzija, Emilie</au><au>Quemerais, Thomas</au><au>Gianesello, Frederic</au><au>Gloria, Daniel</au><au>Lasri, Tuami</au><au>Dambrine, Gilles</au><au>Gaquiere, Christophe</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fully Integrated Interferometry-Based Reflectometer for High-Impedance Instrumentation</atitle><jtitle>IEEE transactions on microwave theory and techniques</jtitle><stitle>TMTT</stitle><date>2018-08-01</date><risdate>2018</risdate><volume>66</volume><issue>8</issue><spage>3901</spage><epage>3908</epage><pages>3901-3908</pages><issn>0018-9480</issn><eissn>1557-9670</eissn><coden>IETMAB</coden><abstract><![CDATA[Microwave imaging of nanoelectronic devices has turned a simple reflection coefficient measurement, usually carried out by a 50-<inline-formula> <tex-math notation="LaTeX">\Omega </tex-math></inline-formula> vector-network analyzer, into a high-impedance instrumentation challenge. Interferometry-based reflectometers (IBR) have been found to be successful solutions in addressing this challenge. However, such solutions do not consider instrumentation of high impedance and high frequency as well as minimization of environment variations in a comprehensive manner. In this paper, these aspects are addressed jointly through the proposal of a fully integrated IBR in the STMicroelectronics BiCMOS 55-nm technology. Three varactor samples having a capacitance ranging from 0.65 to 0.95 fF are measured at 17.6 GHz for demonstration. The fully integrated IBR achieved a magnitude error below −35 dB, a phase error below 0.03°, and an accuracy better than 59.7 aF. Moreover, <inline-formula> <tex-math notation="LaTeX">C </tex-math></inline-formula>-<inline-formula> <tex-math notation="LaTeX">V </tex-math></inline-formula> slope measurement error is better than 2.8 aF, which is ten times smaller than found in the state-of-the-art IBR. Such betterment is explained by the monolithic integration of IBR and device-under-test as implemented in this paper.]]></abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TMTT.2018.2831699</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-0038-9058</orcidid><orcidid>https://orcid.org/0000-0003-3082-2489</orcidid><orcidid>https://orcid.org/0000-0001-5268-9223</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9480 |
ispartof | IEEE transactions on microwave theory and techniques, 2018-08, Vol.66 (8), p.3901-3908 |
issn | 0018-9480 1557-9670 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_01789805v1 |
source | IEEE Electronic Library (IEL) |
subjects | Audio frequencies BiCMOS 55 nm Dielectric measurement Electronics Engineering Sciences Error analysis Errors Frequency measurement fully integrated instrumentation High impedance high-impedance microwave Instruments Interferometry interferometry-based reflectometer (IBR) Micro and nanotechnologies Microelectronics Microwave imaging Microwave theory and techniques Nanoelectronics Nanotechnology devices Network analysers Phase error Phase measurement Reflectance Reflectometers sub-fF MOS varactor Varactors |
title | Fully Integrated Interferometry-Based Reflectometer for High-Impedance Instrumentation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T04%3A18%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fully%20Integrated%20Interferometry-Based%20Reflectometer%20for%20High-Impedance%20Instrumentation&rft.jtitle=IEEE%20transactions%20on%20microwave%20theory%20and%20techniques&rft.au=Maris%20Ferreira,%20Pietro&rft.date=2018-08-01&rft.volume=66&rft.issue=8&rft.spage=3901&rft.epage=3908&rft.pages=3901-3908&rft.issn=0018-9480&rft.eissn=1557-9670&rft.coden=IETMAB&rft_id=info:doi/10.1109/TMTT.2018.2831699&rft_dat=%3Cproquest_RIE%3E2117115070%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2117115070&rft_id=info:pmid/&rft_ieee_id=8359102&rfr_iscdi=true |