New Low-Rank Filters for MIMO-STAP Based on an Orthogonal Tensorial Decomposition

We develop in this paper a new adaptive low-rank (LR) filter for MIMO-space time adaptive processing (STAP) application based on a tensorial modeling of the data. This filter is based on an extension of the higher order singular value decomposition (HOSVD) (which is also one possible extension of si...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on aerospace and electronic systems 2018-06, Vol.54 (3), p.1208-1220
Hauptverfasser: Brigui, Frederic, Boizard, Maxime, Ginolhac, Guillaume, Pascal, Frederic
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1220
container_issue 3
container_start_page 1208
container_title IEEE transactions on aerospace and electronic systems
container_volume 54
creator Brigui, Frederic
Boizard, Maxime
Ginolhac, Guillaume
Pascal, Frederic
description We develop in this paper a new adaptive low-rank (LR) filter for MIMO-space time adaptive processing (STAP) application based on a tensorial modeling of the data. This filter is based on an extension of the higher order singular value decomposition (HOSVD) (which is also one possible extension of singular value decomposition to the tensor case), called alternative unfolding HOSVD (AU-HOSVD), which allows us to consider the combinations of dimensions. This property is necessary to keep the advantages of the STAP and the MIMO characteristics of the data. We show that the choice of a good partition (as well as the tensorial modeling) is not heuristic but have to follow several features. Thanks to the derivation of the theoretical formulation of multimode ranks for all partitions, the tensorial LR filters are easy to compute. Results on simulated data show the good performance of the AU-HOSVD LR filters in terms of secondary data and clutter notch.
doi_str_mv 10.1109/TAES.2017.2776679
format Article
fullrecord <record><control><sourceid>hal_RIE</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01789076v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8231180</ieee_id><sourcerecordid>oai_HAL_hal_01789076v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c342t-47ab08d018161af9bbdef92f8362703f32dab3efc5076564600509e0e85c11843</originalsourceid><addsrcrecordid>eNo9kMtOwzAQRS0EEqXwAYiNtyxS_EjseBlKSyulFGhYW05i00AaIzui4u9x1KqreejemasDwC1GE4yReCiy2WZCEOYTwjljXJyBEU4SHgmG6DkYIYTTSJAEX4Ir77_CGKcxHYG3F72Hud1H76r7hvOm7bXz0FgHV8vVOtoU2St8VF7X0HZQdXDt-q39tJ1qYaE7b10Tuidd2d2P9U3f2O4aXBjVen1zrGPwMZ8V00WUr5-X0yyPKhqTPoq5KlFah1iYYWVEWdbaCGJSyghH1FBSq5JqUyWIs4TFDKEECY10mlQYh-xjcH-4u1Wt_HHNTrk_aVUjF1kuh12AkYpg_sVBiw_aylnvnTYnA0Zy4CcHfnLgJ4_8gufu4Gm01id9Smj4jug_NJBptQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>New Low-Rank Filters for MIMO-STAP Based on an Orthogonal Tensorial Decomposition</title><source>IEEE Electronic Library (IEL)</source><creator>Brigui, Frederic ; Boizard, Maxime ; Ginolhac, Guillaume ; Pascal, Frederic</creator><creatorcontrib>Brigui, Frederic ; Boizard, Maxime ; Ginolhac, Guillaume ; Pascal, Frederic</creatorcontrib><description>We develop in this paper a new adaptive low-rank (LR) filter for MIMO-space time adaptive processing (STAP) application based on a tensorial modeling of the data. This filter is based on an extension of the higher order singular value decomposition (HOSVD) (which is also one possible extension of singular value decomposition to the tensor case), called alternative unfolding HOSVD (AU-HOSVD), which allows us to consider the combinations of dimensions. This property is necessary to keep the advantages of the STAP and the MIMO characteristics of the data. We show that the choice of a good partition (as well as the tensorial modeling) is not heuristic but have to follow several features. Thanks to the derivation of the theoretical formulation of multimode ranks for all partitions, the tensorial LR filters are easy to compute. Results on simulated data show the good performance of the AU-HOSVD LR filters in terms of secondary data and clutter notch.</description><identifier>ISSN: 0018-9251</identifier><identifier>EISSN: 1557-9603</identifier><identifier>DOI: 10.1109/TAES.2017.2776679</identifier><identifier>CODEN: IEARAX</identifier><language>eng</language><publisher>IEEE</publisher><subject>Clutter ; Covariance matrices ; Engineering Sciences ; Low-rank (LR) clutter ; MIMO ; MIMO communication ; MIMO radar ; orthogonal tensor decomposition ; radar ; Signal and Image processing ; Singular value decomposition ; space time adaptive processing (STAP) ; Tensors</subject><ispartof>IEEE transactions on aerospace and electronic systems, 2018-06, Vol.54 (3), p.1208-1220</ispartof><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c342t-47ab08d018161af9bbdef92f8362703f32dab3efc5076564600509e0e85c11843</citedby><cites>FETCH-LOGICAL-c342t-47ab08d018161af9bbdef92f8362703f32dab3efc5076564600509e0e85c11843</cites><orcidid>0000-0001-9318-028X ; 0000-0003-0196-6395</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8231180$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,776,780,792,881,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8231180$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://hal.science/hal-01789076$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Brigui, Frederic</creatorcontrib><creatorcontrib>Boizard, Maxime</creatorcontrib><creatorcontrib>Ginolhac, Guillaume</creatorcontrib><creatorcontrib>Pascal, Frederic</creatorcontrib><title>New Low-Rank Filters for MIMO-STAP Based on an Orthogonal Tensorial Decomposition</title><title>IEEE transactions on aerospace and electronic systems</title><addtitle>T-AES</addtitle><description>We develop in this paper a new adaptive low-rank (LR) filter for MIMO-space time adaptive processing (STAP) application based on a tensorial modeling of the data. This filter is based on an extension of the higher order singular value decomposition (HOSVD) (which is also one possible extension of singular value decomposition to the tensor case), called alternative unfolding HOSVD (AU-HOSVD), which allows us to consider the combinations of dimensions. This property is necessary to keep the advantages of the STAP and the MIMO characteristics of the data. We show that the choice of a good partition (as well as the tensorial modeling) is not heuristic but have to follow several features. Thanks to the derivation of the theoretical formulation of multimode ranks for all partitions, the tensorial LR filters are easy to compute. Results on simulated data show the good performance of the AU-HOSVD LR filters in terms of secondary data and clutter notch.</description><subject>Clutter</subject><subject>Covariance matrices</subject><subject>Engineering Sciences</subject><subject>Low-rank (LR) clutter</subject><subject>MIMO</subject><subject>MIMO communication</subject><subject>MIMO radar</subject><subject>orthogonal tensor decomposition</subject><subject>radar</subject><subject>Signal and Image processing</subject><subject>Singular value decomposition</subject><subject>space time adaptive processing (STAP)</subject><subject>Tensors</subject><issn>0018-9251</issn><issn>1557-9603</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kMtOwzAQRS0EEqXwAYiNtyxS_EjseBlKSyulFGhYW05i00AaIzui4u9x1KqreejemasDwC1GE4yReCiy2WZCEOYTwjljXJyBEU4SHgmG6DkYIYTTSJAEX4Ir77_CGKcxHYG3F72Hud1H76r7hvOm7bXz0FgHV8vVOtoU2St8VF7X0HZQdXDt-q39tJ1qYaE7b10Tuidd2d2P9U3f2O4aXBjVen1zrGPwMZ8V00WUr5-X0yyPKhqTPoq5KlFah1iYYWVEWdbaCGJSyghH1FBSq5JqUyWIs4TFDKEECY10mlQYh-xjcH-4u1Wt_HHNTrk_aVUjF1kuh12AkYpg_sVBiw_aylnvnTYnA0Zy4CcHfnLgJ4_8gufu4Gm01id9Smj4jug_NJBptQ</recordid><startdate>20180601</startdate><enddate>20180601</enddate><creator>Brigui, Frederic</creator><creator>Boizard, Maxime</creator><creator>Ginolhac, Guillaume</creator><creator>Pascal, Frederic</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0001-9318-028X</orcidid><orcidid>https://orcid.org/0000-0003-0196-6395</orcidid></search><sort><creationdate>20180601</creationdate><title>New Low-Rank Filters for MIMO-STAP Based on an Orthogonal Tensorial Decomposition</title><author>Brigui, Frederic ; Boizard, Maxime ; Ginolhac, Guillaume ; Pascal, Frederic</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c342t-47ab08d018161af9bbdef92f8362703f32dab3efc5076564600509e0e85c11843</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Clutter</topic><topic>Covariance matrices</topic><topic>Engineering Sciences</topic><topic>Low-rank (LR) clutter</topic><topic>MIMO</topic><topic>MIMO communication</topic><topic>MIMO radar</topic><topic>orthogonal tensor decomposition</topic><topic>radar</topic><topic>Signal and Image processing</topic><topic>Singular value decomposition</topic><topic>space time adaptive processing (STAP)</topic><topic>Tensors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Brigui, Frederic</creatorcontrib><creatorcontrib>Boizard, Maxime</creatorcontrib><creatorcontrib>Ginolhac, Guillaume</creatorcontrib><creatorcontrib>Pascal, Frederic</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>IEEE transactions on aerospace and electronic systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Brigui, Frederic</au><au>Boizard, Maxime</au><au>Ginolhac, Guillaume</au><au>Pascal, Frederic</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>New Low-Rank Filters for MIMO-STAP Based on an Orthogonal Tensorial Decomposition</atitle><jtitle>IEEE transactions on aerospace and electronic systems</jtitle><stitle>T-AES</stitle><date>2018-06-01</date><risdate>2018</risdate><volume>54</volume><issue>3</issue><spage>1208</spage><epage>1220</epage><pages>1208-1220</pages><issn>0018-9251</issn><eissn>1557-9603</eissn><coden>IEARAX</coden><abstract>We develop in this paper a new adaptive low-rank (LR) filter for MIMO-space time adaptive processing (STAP) application based on a tensorial modeling of the data. This filter is based on an extension of the higher order singular value decomposition (HOSVD) (which is also one possible extension of singular value decomposition to the tensor case), called alternative unfolding HOSVD (AU-HOSVD), which allows us to consider the combinations of dimensions. This property is necessary to keep the advantages of the STAP and the MIMO characteristics of the data. We show that the choice of a good partition (as well as the tensorial modeling) is not heuristic but have to follow several features. Thanks to the derivation of the theoretical formulation of multimode ranks for all partitions, the tensorial LR filters are easy to compute. Results on simulated data show the good performance of the AU-HOSVD LR filters in terms of secondary data and clutter notch.</abstract><pub>IEEE</pub><doi>10.1109/TAES.2017.2776679</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-9318-028X</orcidid><orcidid>https://orcid.org/0000-0003-0196-6395</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9251
ispartof IEEE transactions on aerospace and electronic systems, 2018-06, Vol.54 (3), p.1208-1220
issn 0018-9251
1557-9603
language eng
recordid cdi_hal_primary_oai_HAL_hal_01789076v1
source IEEE Electronic Library (IEL)
subjects Clutter
Covariance matrices
Engineering Sciences
Low-rank (LR) clutter
MIMO
MIMO communication
MIMO radar
orthogonal tensor decomposition
radar
Signal and Image processing
Singular value decomposition
space time adaptive processing (STAP)
Tensors
title New Low-Rank Filters for MIMO-STAP Based on an Orthogonal Tensorial Decomposition
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-19T01%3A32%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=New%20Low-Rank%20Filters%20for%20MIMO-STAP%20Based%20on%20an%20Orthogonal%20Tensorial%20Decomposition&rft.jtitle=IEEE%20transactions%20on%20aerospace%20and%20electronic%20systems&rft.au=Brigui,%20Frederic&rft.date=2018-06-01&rft.volume=54&rft.issue=3&rft.spage=1208&rft.epage=1220&rft.pages=1208-1220&rft.issn=0018-9251&rft.eissn=1557-9603&rft.coden=IEARAX&rft_id=info:doi/10.1109/TAES.2017.2776679&rft_dat=%3Chal_RIE%3Eoai_HAL_hal_01789076v1%3C/hal_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=8231180&rfr_iscdi=true