Collaborative delivery with energy-constrained mobile robots

We consider the problem of collectively delivering some package from a specified source to a designated target location in a graph, using multiple mobile agents. Each agent has limited energy which constrains the distance it can move. Hence multiple agents need to collaborate to move the package, ea...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Theoretical computer science 2020-03, Vol.810, p.2-14
Hauptverfasser: Bärtschi, Andreas, Chalopin, Jérémie, Das, Shantanu, Disser, Yann, Geissmann, Barbara, Graf, Daniel, Labourel, Arnaud, Mihalák, Matúš
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 14
container_issue
container_start_page 2
container_title Theoretical computer science
container_volume 810
creator Bärtschi, Andreas
Chalopin, Jérémie
Das, Shantanu
Disser, Yann
Geissmann, Barbara
Graf, Daniel
Labourel, Arnaud
Mihalák, Matúš
description We consider the problem of collectively delivering some package from a specified source to a designated target location in a graph, using multiple mobile agents. Each agent has limited energy which constrains the distance it can move. Hence multiple agents need to collaborate to move the package, each agent handing over the package to the next agent to carry it forward. Given the positions of the agents in the graph and their respective budgets, the problem of finding a feasible movement schedule for the agents can be challenging. We consider two variants of the problem: in non-returning delivery, the agents can stop anywhere; whereas in returning delivery, each agent needs to return to its starting location, a variant which has not been studied before. We first provide a polynomial-time algorithm for returning delivery on trees, which is in contrast to the known (weak) NP-hardness of the non-returning version. In addition, we give resource-augmented algorithms for returning delivery in general graphs. Finally, we give tight lower bounds on the required resource augmentation for both variants of the problem. In this sense, our results close the gap left by previous research.
doi_str_mv 10.1016/j.tcs.2017.04.018
format Article
fullrecord <record><control><sourceid>hal_cross</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01787176v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0304397517304656</els_id><sourcerecordid>oai_HAL_hal_01787176v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c374t-d45f80d0f47bc248f1eaf7096b6e8bcb8ab35d15046e8ce69e33351b34676e663</originalsourceid><addsrcrecordid>eNp9kE9LAzEQxYMoWKsfwNtePeyabLJJFr2UolYoeNFzyJ9Zm7LdSBIq_famVDw6l8cM7zfwHkK3BDcEE36_bbJNTYuJaDBrMJFnaEak6Ou27dk5mmGKWU170V2iq5S2uEwn-Aw9LsM4ahOizn4PlYOxSDxU3z5vKpggfh5qG6aUo_YTuGoXjB-hisGEnK7RxaDHBDe_Okcfz0_vy1W9fnt5XS7WtaWC5dqxbpDY4YEJY1smBwJ6ELjnhoM01khtaOdIh1nZLfAeKKUdMZRxwYFzOkd3p78bPaqv6Hc6HlTQXq0Wa3W8ldhSEMH3pHjJyWtjSCnC8AcQrI5Vqa0qValjVQqzgsrCPJwYKCH2HqJK1sNkwfkINisX_D_0D3t2cWo</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Collaborative delivery with energy-constrained mobile robots</title><source>Elsevier ScienceDirect Journals Complete</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Bärtschi, Andreas ; Chalopin, Jérémie ; Das, Shantanu ; Disser, Yann ; Geissmann, Barbara ; Graf, Daniel ; Labourel, Arnaud ; Mihalák, Matúš</creator><creatorcontrib>Bärtschi, Andreas ; Chalopin, Jérémie ; Das, Shantanu ; Disser, Yann ; Geissmann, Barbara ; Graf, Daniel ; Labourel, Arnaud ; Mihalák, Matúš</creatorcontrib><description>We consider the problem of collectively delivering some package from a specified source to a designated target location in a graph, using multiple mobile agents. Each agent has limited energy which constrains the distance it can move. Hence multiple agents need to collaborate to move the package, each agent handing over the package to the next agent to carry it forward. Given the positions of the agents in the graph and their respective budgets, the problem of finding a feasible movement schedule for the agents can be challenging. We consider two variants of the problem: in non-returning delivery, the agents can stop anywhere; whereas in returning delivery, each agent needs to return to its starting location, a variant which has not been studied before. We first provide a polynomial-time algorithm for returning delivery on trees, which is in contrast to the known (weak) NP-hardness of the non-returning version. In addition, we give resource-augmented algorithms for returning delivery in general graphs. Finally, we give tight lower bounds on the required resource augmentation for both variants of the problem. In this sense, our results close the gap left by previous research.</description><identifier>ISSN: 0304-3975</identifier><identifier>EISSN: 1879-2294</identifier><identifier>DOI: 10.1016/j.tcs.2017.04.018</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Budget ; Computer Science ; Delivery ; Limited battery ; Mobile agents ; Resource augmentation</subject><ispartof>Theoretical computer science, 2020-03, Vol.810, p.2-14</ispartof><rights>2017 Elsevier B.V.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c374t-d45f80d0f47bc248f1eaf7096b6e8bcb8ab35d15046e8ce69e33351b34676e663</citedby><cites>FETCH-LOGICAL-c374t-d45f80d0f47bc248f1eaf7096b6e8bcb8ab35d15046e8ce69e33351b34676e663</cites><orcidid>0000-0002-6137-5725 ; 0000-0002-1898-607X ; 0000-0002-2988-8969 ; 0000-0003-4008-2445</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.tcs.2017.04.018$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://hal.science/hal-01787176$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Bärtschi, Andreas</creatorcontrib><creatorcontrib>Chalopin, Jérémie</creatorcontrib><creatorcontrib>Das, Shantanu</creatorcontrib><creatorcontrib>Disser, Yann</creatorcontrib><creatorcontrib>Geissmann, Barbara</creatorcontrib><creatorcontrib>Graf, Daniel</creatorcontrib><creatorcontrib>Labourel, Arnaud</creatorcontrib><creatorcontrib>Mihalák, Matúš</creatorcontrib><title>Collaborative delivery with energy-constrained mobile robots</title><title>Theoretical computer science</title><description>We consider the problem of collectively delivering some package from a specified source to a designated target location in a graph, using multiple mobile agents. Each agent has limited energy which constrains the distance it can move. Hence multiple agents need to collaborate to move the package, each agent handing over the package to the next agent to carry it forward. Given the positions of the agents in the graph and their respective budgets, the problem of finding a feasible movement schedule for the agents can be challenging. We consider two variants of the problem: in non-returning delivery, the agents can stop anywhere; whereas in returning delivery, each agent needs to return to its starting location, a variant which has not been studied before. We first provide a polynomial-time algorithm for returning delivery on trees, which is in contrast to the known (weak) NP-hardness of the non-returning version. In addition, we give resource-augmented algorithms for returning delivery in general graphs. Finally, we give tight lower bounds on the required resource augmentation for both variants of the problem. In this sense, our results close the gap left by previous research.</description><subject>Budget</subject><subject>Computer Science</subject><subject>Delivery</subject><subject>Limited battery</subject><subject>Mobile agents</subject><subject>Resource augmentation</subject><issn>0304-3975</issn><issn>1879-2294</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LAzEQxYMoWKsfwNtePeyabLJJFr2UolYoeNFzyJ9Zm7LdSBIq_famVDw6l8cM7zfwHkK3BDcEE36_bbJNTYuJaDBrMJFnaEak6Ou27dk5mmGKWU170V2iq5S2uEwn-Aw9LsM4ahOizn4PlYOxSDxU3z5vKpggfh5qG6aUo_YTuGoXjB-hisGEnK7RxaDHBDe_Okcfz0_vy1W9fnt5XS7WtaWC5dqxbpDY4YEJY1smBwJ6ELjnhoM01khtaOdIh1nZLfAeKKUdMZRxwYFzOkd3p78bPaqv6Hc6HlTQXq0Wa3W8ldhSEMH3pHjJyWtjSCnC8AcQrI5Vqa0qValjVQqzgsrCPJwYKCH2HqJK1sNkwfkINisX_D_0D3t2cWo</recordid><startdate>20200302</startdate><enddate>20200302</enddate><creator>Bärtschi, Andreas</creator><creator>Chalopin, Jérémie</creator><creator>Das, Shantanu</creator><creator>Disser, Yann</creator><creator>Geissmann, Barbara</creator><creator>Graf, Daniel</creator><creator>Labourel, Arnaud</creator><creator>Mihalák, Matúš</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-6137-5725</orcidid><orcidid>https://orcid.org/0000-0002-1898-607X</orcidid><orcidid>https://orcid.org/0000-0002-2988-8969</orcidid><orcidid>https://orcid.org/0000-0003-4008-2445</orcidid></search><sort><creationdate>20200302</creationdate><title>Collaborative delivery with energy-constrained mobile robots</title><author>Bärtschi, Andreas ; Chalopin, Jérémie ; Das, Shantanu ; Disser, Yann ; Geissmann, Barbara ; Graf, Daniel ; Labourel, Arnaud ; Mihalák, Matúš</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c374t-d45f80d0f47bc248f1eaf7096b6e8bcb8ab35d15046e8ce69e33351b34676e663</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Budget</topic><topic>Computer Science</topic><topic>Delivery</topic><topic>Limited battery</topic><topic>Mobile agents</topic><topic>Resource augmentation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bärtschi, Andreas</creatorcontrib><creatorcontrib>Chalopin, Jérémie</creatorcontrib><creatorcontrib>Das, Shantanu</creatorcontrib><creatorcontrib>Disser, Yann</creatorcontrib><creatorcontrib>Geissmann, Barbara</creatorcontrib><creatorcontrib>Graf, Daniel</creatorcontrib><creatorcontrib>Labourel, Arnaud</creatorcontrib><creatorcontrib>Mihalák, Matúš</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Theoretical computer science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bärtschi, Andreas</au><au>Chalopin, Jérémie</au><au>Das, Shantanu</au><au>Disser, Yann</au><au>Geissmann, Barbara</au><au>Graf, Daniel</au><au>Labourel, Arnaud</au><au>Mihalák, Matúš</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Collaborative delivery with energy-constrained mobile robots</atitle><jtitle>Theoretical computer science</jtitle><date>2020-03-02</date><risdate>2020</risdate><volume>810</volume><spage>2</spage><epage>14</epage><pages>2-14</pages><issn>0304-3975</issn><eissn>1879-2294</eissn><abstract>We consider the problem of collectively delivering some package from a specified source to a designated target location in a graph, using multiple mobile agents. Each agent has limited energy which constrains the distance it can move. Hence multiple agents need to collaborate to move the package, each agent handing over the package to the next agent to carry it forward. Given the positions of the agents in the graph and their respective budgets, the problem of finding a feasible movement schedule for the agents can be challenging. We consider two variants of the problem: in non-returning delivery, the agents can stop anywhere; whereas in returning delivery, each agent needs to return to its starting location, a variant which has not been studied before. We first provide a polynomial-time algorithm for returning delivery on trees, which is in contrast to the known (weak) NP-hardness of the non-returning version. In addition, we give resource-augmented algorithms for returning delivery in general graphs. Finally, we give tight lower bounds on the required resource augmentation for both variants of the problem. In this sense, our results close the gap left by previous research.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.tcs.2017.04.018</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-6137-5725</orcidid><orcidid>https://orcid.org/0000-0002-1898-607X</orcidid><orcidid>https://orcid.org/0000-0002-2988-8969</orcidid><orcidid>https://orcid.org/0000-0003-4008-2445</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0304-3975
ispartof Theoretical computer science, 2020-03, Vol.810, p.2-14
issn 0304-3975
1879-2294
language eng
recordid cdi_hal_primary_oai_HAL_hal_01787176v1
source Elsevier ScienceDirect Journals Complete; EZB-FREE-00999 freely available EZB journals
subjects Budget
Computer Science
Delivery
Limited battery
Mobile agents
Resource augmentation
title Collaborative delivery with energy-constrained mobile robots
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T11%3A51%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Collaborative%20delivery%20with%20energy-constrained%20mobile%20robots&rft.jtitle=Theoretical%20computer%20science&rft.au=B%C3%A4rtschi,%20Andreas&rft.date=2020-03-02&rft.volume=810&rft.spage=2&rft.epage=14&rft.pages=2-14&rft.issn=0304-3975&rft.eissn=1879-2294&rft_id=info:doi/10.1016/j.tcs.2017.04.018&rft_dat=%3Chal_cross%3Eoai_HAL_hal_01787176v1%3C/hal_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0304397517304656&rfr_iscdi=true