Characterization of ion irradiation effects on the microstructure, hardness, deformation and crack initiation behavior of austenitic stainless steel:Heavy ions vs protons
Irradiation Assisted Stress Corrosion Cracking (IASCC) is a complex phenomenon of degradation which can have a significant influence on maintenance time and cost of core internals of a Pressurized Water Reactor (PWR). Hence, it is an issue of concern, especially in the context of lifetime extension...
Gespeichert in:
Veröffentlicht in: | Journal of nuclear materials 2018-04, Vol.501, p.45-58 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 58 |
---|---|
container_issue | |
container_start_page | 45 |
container_title | Journal of nuclear materials |
container_volume | 501 |
creator | Gupta, J. Hure, J. Tanguy, B. Laffont, L. Lafont, M.-C. Andrieu, E. |
description | Irradiation Assisted Stress Corrosion Cracking (IASCC) is a complex phenomenon of degradation which can have a significant influence on maintenance time and cost of core internals of a Pressurized Water Reactor (PWR). Hence, it is an issue of concern, especially in the context of lifetime extension of PWRs. Proton irradiation is generally used as a representative alternative of neutron irradiation to improve the current understanding of the mechanisms involved in IASCC. This study assesses the possibility of using heavy ions irradiation to evaluate IASCC mechanisms by comparing the irradiation induced modifications (in microstructure and mechanical properties) and cracking susceptibility of SA 304 L after both type of irradiations: Fe irradiation at 450 °C and proton irradiation at 350 °C. Irradiation-induced defects are characterized and quantified along with nano-hardness measurements, showing a correlation between irradiation hardening and density of Frank loops that is well captured by Orowan's formula. Both irradiations (iron and proton) increase the susceptibility of SA 304 L to intergranular cracking on subjection to Constant Extension Rate Tensile tests (CERT) in simulated nominal PWR primary water environment at 340 °C. For these conditions, cracking susceptibility is found to be quantitatively similar for both irradiations, despite significant differences in hardening and degree of localization. |
doi_str_mv | 10.1016/j.jnucmat.2018.01.013 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01780338v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022311517311200</els_id><sourcerecordid>2064413382</sourcerecordid><originalsourceid>FETCH-LOGICAL-c418t-8c1d415bbb580c0f43053edd07060ab0d7e3edef6ec1ac3a4c7ce3dfab3d7533</originalsourceid><addsrcrecordid>eNqFUcGKFDEQDaLguPoJQsCTsD1WOt3TrRdZBnUWBrzsPVQnFSbtTGdN0g3rJ_mVJvTgdaGgKpVXr17yGHsvYCtA7D6N23Ga9QXTtgbRb0HkkC_YRvSdrJq-hpdsA1DXlRSifc3exDgCQPsZ2g37uz9hQJ0ouD-YnJ-4t7wkFwIat7bIWtIp8lymE_GL08HHFGad5kC3PDOYiWK85YasD5d1CCfDdab-xd3k0pVpoBMuzoeyBeeYqFxpHhO66ZwpckV0_nIgXJ6KjMiXyB-DT7l8y15ZPEd6d8037OH7t4f9oTr-_HG_vztWuhF9qnotTCPaYRjaHjTYRkIryRjoYAc4gOkoH8nuSAvUEhvdaZLG4iBN10p5wz6utCc8q8fgLhielEenDndHVXoguh6k7BeRsR9WbJb4e6aY1OjnMGV1qoZd04gMqzOqXVHl22Ig-59WgCoOqlFdHVTFwbwhR1HydZ2j_NrFUVBRO5o0GReyH8p49wzDP4O1rIc</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2064413382</pqid></control><display><type>article</type><title>Characterization of ion irradiation effects on the microstructure, hardness, deformation and crack initiation behavior of austenitic stainless steel:Heavy ions vs protons</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Gupta, J. ; Hure, J. ; Tanguy, B. ; Laffont, L. ; Lafont, M.-C. ; Andrieu, E.</creator><creatorcontrib>Gupta, J. ; Hure, J. ; Tanguy, B. ; Laffont, L. ; Lafont, M.-C. ; Andrieu, E.</creatorcontrib><description>Irradiation Assisted Stress Corrosion Cracking (IASCC) is a complex phenomenon of degradation which can have a significant influence on maintenance time and cost of core internals of a Pressurized Water Reactor (PWR). Hence, it is an issue of concern, especially in the context of lifetime extension of PWRs. Proton irradiation is generally used as a representative alternative of neutron irradiation to improve the current understanding of the mechanisms involved in IASCC. This study assesses the possibility of using heavy ions irradiation to evaluate IASCC mechanisms by comparing the irradiation induced modifications (in microstructure and mechanical properties) and cracking susceptibility of SA 304 L after both type of irradiations: Fe irradiation at 450 °C and proton irradiation at 350 °C. Irradiation-induced defects are characterized and quantified along with nano-hardness measurements, showing a correlation between irradiation hardening and density of Frank loops that is well captured by Orowan's formula. Both irradiations (iron and proton) increase the susceptibility of SA 304 L to intergranular cracking on subjection to Constant Extension Rate Tensile tests (CERT) in simulated nominal PWR primary water environment at 340 °C. For these conditions, cracking susceptibility is found to be quantitatively similar for both irradiations, despite significant differences in hardening and degree of localization.</description><identifier>ISSN: 0022-3115</identifier><identifier>EISSN: 1873-4820</identifier><identifier>DOI: 10.1016/j.jnucmat.2018.01.013</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Austenitic stainless steel ; Austenitic stainless steels ; Computer simulation ; Condensed Matter ; Correlation analysis ; Crack initiation ; Crack propagation ; Deformation ; Deformation effects ; Deformation mechanisms ; Hardening ; Hardness ; Heavy ions ; Ion irradiation ; Iron ; Irradiation ; Localization ; Marine environment ; Materials Science ; Mechanical properties ; Mechanics ; Mechanics of materials ; Microstructure ; Neutron irradiation ; Nuclear energy ; Physics ; Pressurized water ; Pressurized water reactors ; Proton irradiation ; Protons ; Stainless steel ; Stress corrosion ; Stress corrosion cracking ; Tensile tests</subject><ispartof>Journal of nuclear materials, 2018-04, Vol.501, p.45-58</ispartof><rights>2018 Elsevier B.V.</rights><rights>Copyright Elsevier BV Apr 2018</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c418t-8c1d415bbb580c0f43053edd07060ab0d7e3edef6ec1ac3a4c7ce3dfab3d7533</citedby><cites>FETCH-LOGICAL-c418t-8c1d415bbb580c0f43053edd07060ab0d7e3edef6ec1ac3a4c7ce3dfab3d7533</cites><orcidid>0000-0003-4002-793X ; 0000-0001-8292-5039</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jnucmat.2018.01.013$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://hal.science/hal-01780338$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Gupta, J.</creatorcontrib><creatorcontrib>Hure, J.</creatorcontrib><creatorcontrib>Tanguy, B.</creatorcontrib><creatorcontrib>Laffont, L.</creatorcontrib><creatorcontrib>Lafont, M.-C.</creatorcontrib><creatorcontrib>Andrieu, E.</creatorcontrib><title>Characterization of ion irradiation effects on the microstructure, hardness, deformation and crack initiation behavior of austenitic stainless steel:Heavy ions vs protons</title><title>Journal of nuclear materials</title><description>Irradiation Assisted Stress Corrosion Cracking (IASCC) is a complex phenomenon of degradation which can have a significant influence on maintenance time and cost of core internals of a Pressurized Water Reactor (PWR). Hence, it is an issue of concern, especially in the context of lifetime extension of PWRs. Proton irradiation is generally used as a representative alternative of neutron irradiation to improve the current understanding of the mechanisms involved in IASCC. This study assesses the possibility of using heavy ions irradiation to evaluate IASCC mechanisms by comparing the irradiation induced modifications (in microstructure and mechanical properties) and cracking susceptibility of SA 304 L after both type of irradiations: Fe irradiation at 450 °C and proton irradiation at 350 °C. Irradiation-induced defects are characterized and quantified along with nano-hardness measurements, showing a correlation between irradiation hardening and density of Frank loops that is well captured by Orowan's formula. Both irradiations (iron and proton) increase the susceptibility of SA 304 L to intergranular cracking on subjection to Constant Extension Rate Tensile tests (CERT) in simulated nominal PWR primary water environment at 340 °C. For these conditions, cracking susceptibility is found to be quantitatively similar for both irradiations, despite significant differences in hardening and degree of localization.</description><subject>Austenitic stainless steel</subject><subject>Austenitic stainless steels</subject><subject>Computer simulation</subject><subject>Condensed Matter</subject><subject>Correlation analysis</subject><subject>Crack initiation</subject><subject>Crack propagation</subject><subject>Deformation</subject><subject>Deformation effects</subject><subject>Deformation mechanisms</subject><subject>Hardening</subject><subject>Hardness</subject><subject>Heavy ions</subject><subject>Ion irradiation</subject><subject>Iron</subject><subject>Irradiation</subject><subject>Localization</subject><subject>Marine environment</subject><subject>Materials Science</subject><subject>Mechanical properties</subject><subject>Mechanics</subject><subject>Mechanics of materials</subject><subject>Microstructure</subject><subject>Neutron irradiation</subject><subject>Nuclear energy</subject><subject>Physics</subject><subject>Pressurized water</subject><subject>Pressurized water reactors</subject><subject>Proton irradiation</subject><subject>Protons</subject><subject>Stainless steel</subject><subject>Stress corrosion</subject><subject>Stress corrosion cracking</subject><subject>Tensile tests</subject><issn>0022-3115</issn><issn>1873-4820</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqFUcGKFDEQDaLguPoJQsCTsD1WOt3TrRdZBnUWBrzsPVQnFSbtTGdN0g3rJ_mVJvTgdaGgKpVXr17yGHsvYCtA7D6N23Ga9QXTtgbRb0HkkC_YRvSdrJq-hpdsA1DXlRSifc3exDgCQPsZ2g37uz9hQJ0ouD-YnJ-4t7wkFwIat7bIWtIp8lymE_GL08HHFGad5kC3PDOYiWK85YasD5d1CCfDdab-xd3k0pVpoBMuzoeyBeeYqFxpHhO66ZwpckV0_nIgXJ6KjMiXyB-DT7l8y15ZPEd6d8037OH7t4f9oTr-_HG_vztWuhF9qnotTCPaYRjaHjTYRkIryRjoYAc4gOkoH8nuSAvUEhvdaZLG4iBN10p5wz6utCc8q8fgLhielEenDndHVXoguh6k7BeRsR9WbJb4e6aY1OjnMGV1qoZd04gMqzOqXVHl22Ig-59WgCoOqlFdHVTFwbwhR1HydZ2j_NrFUVBRO5o0GReyH8p49wzDP4O1rIc</recordid><startdate>20180401</startdate><enddate>20180401</enddate><creator>Gupta, J.</creator><creator>Hure, J.</creator><creator>Tanguy, B.</creator><creator>Laffont, L.</creator><creator>Lafont, M.-C.</creator><creator>Andrieu, E.</creator><general>Elsevier B.V</general><general>Elsevier BV</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QQ</scope><scope>7SR</scope><scope>7ST</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope><scope>SOI</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0003-4002-793X</orcidid><orcidid>https://orcid.org/0000-0001-8292-5039</orcidid></search><sort><creationdate>20180401</creationdate><title>Characterization of ion irradiation effects on the microstructure, hardness, deformation and crack initiation behavior of austenitic stainless steel:Heavy ions vs protons</title><author>Gupta, J. ; Hure, J. ; Tanguy, B. ; Laffont, L. ; Lafont, M.-C. ; Andrieu, E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c418t-8c1d415bbb580c0f43053edd07060ab0d7e3edef6ec1ac3a4c7ce3dfab3d7533</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Austenitic stainless steel</topic><topic>Austenitic stainless steels</topic><topic>Computer simulation</topic><topic>Condensed Matter</topic><topic>Correlation analysis</topic><topic>Crack initiation</topic><topic>Crack propagation</topic><topic>Deformation</topic><topic>Deformation effects</topic><topic>Deformation mechanisms</topic><topic>Hardening</topic><topic>Hardness</topic><topic>Heavy ions</topic><topic>Ion irradiation</topic><topic>Iron</topic><topic>Irradiation</topic><topic>Localization</topic><topic>Marine environment</topic><topic>Materials Science</topic><topic>Mechanical properties</topic><topic>Mechanics</topic><topic>Mechanics of materials</topic><topic>Microstructure</topic><topic>Neutron irradiation</topic><topic>Nuclear energy</topic><topic>Physics</topic><topic>Pressurized water</topic><topic>Pressurized water reactors</topic><topic>Proton irradiation</topic><topic>Protons</topic><topic>Stainless steel</topic><topic>Stress corrosion</topic><topic>Stress corrosion cracking</topic><topic>Tensile tests</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gupta, J.</creatorcontrib><creatorcontrib>Hure, J.</creatorcontrib><creatorcontrib>Tanguy, B.</creatorcontrib><creatorcontrib>Laffont, L.</creatorcontrib><creatorcontrib>Lafont, M.-C.</creatorcontrib><creatorcontrib>Andrieu, E.</creatorcontrib><collection>CrossRef</collection><collection>Ceramic Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Journal of nuclear materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gupta, J.</au><au>Hure, J.</au><au>Tanguy, B.</au><au>Laffont, L.</au><au>Lafont, M.-C.</au><au>Andrieu, E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Characterization of ion irradiation effects on the microstructure, hardness, deformation and crack initiation behavior of austenitic stainless steel:Heavy ions vs protons</atitle><jtitle>Journal of nuclear materials</jtitle><date>2018-04-01</date><risdate>2018</risdate><volume>501</volume><spage>45</spage><epage>58</epage><pages>45-58</pages><issn>0022-3115</issn><eissn>1873-4820</eissn><abstract>Irradiation Assisted Stress Corrosion Cracking (IASCC) is a complex phenomenon of degradation which can have a significant influence on maintenance time and cost of core internals of a Pressurized Water Reactor (PWR). Hence, it is an issue of concern, especially in the context of lifetime extension of PWRs. Proton irradiation is generally used as a representative alternative of neutron irradiation to improve the current understanding of the mechanisms involved in IASCC. This study assesses the possibility of using heavy ions irradiation to evaluate IASCC mechanisms by comparing the irradiation induced modifications (in microstructure and mechanical properties) and cracking susceptibility of SA 304 L after both type of irradiations: Fe irradiation at 450 °C and proton irradiation at 350 °C. Irradiation-induced defects are characterized and quantified along with nano-hardness measurements, showing a correlation between irradiation hardening and density of Frank loops that is well captured by Orowan's formula. Both irradiations (iron and proton) increase the susceptibility of SA 304 L to intergranular cracking on subjection to Constant Extension Rate Tensile tests (CERT) in simulated nominal PWR primary water environment at 340 °C. For these conditions, cracking susceptibility is found to be quantitatively similar for both irradiations, despite significant differences in hardening and degree of localization.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jnucmat.2018.01.013</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0003-4002-793X</orcidid><orcidid>https://orcid.org/0000-0001-8292-5039</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-3115 |
ispartof | Journal of nuclear materials, 2018-04, Vol.501, p.45-58 |
issn | 0022-3115 1873-4820 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_01780338v1 |
source | ScienceDirect Journals (5 years ago - present) |
subjects | Austenitic stainless steel Austenitic stainless steels Computer simulation Condensed Matter Correlation analysis Crack initiation Crack propagation Deformation Deformation effects Deformation mechanisms Hardening Hardness Heavy ions Ion irradiation Iron Irradiation Localization Marine environment Materials Science Mechanical properties Mechanics Mechanics of materials Microstructure Neutron irradiation Nuclear energy Physics Pressurized water Pressurized water reactors Proton irradiation Protons Stainless steel Stress corrosion Stress corrosion cracking Tensile tests |
title | Characterization of ion irradiation effects on the microstructure, hardness, deformation and crack initiation behavior of austenitic stainless steel:Heavy ions vs protons |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T20%3A33%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Characterization%20of%20ion%20irradiation%20effects%20on%20the%20microstructure,%20hardness,%20deformation%20and%20crack%20initiation%20behavior%20of%20austenitic%20stainless%20steel:Heavy%20ions%20vs%20protons&rft.jtitle=Journal%20of%20nuclear%20materials&rft.au=Gupta,%20J.&rft.date=2018-04-01&rft.volume=501&rft.spage=45&rft.epage=58&rft.pages=45-58&rft.issn=0022-3115&rft.eissn=1873-4820&rft_id=info:doi/10.1016/j.jnucmat.2018.01.013&rft_dat=%3Cproquest_hal_p%3E2064413382%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2064413382&rft_id=info:pmid/&rft_els_id=S0022311517311200&rfr_iscdi=true |