Characterization of ion irradiation effects on the microstructure, hardness, deformation and crack initiation behavior of austenitic stainless steel:Heavy ions vs protons

Irradiation Assisted Stress Corrosion Cracking (IASCC) is a complex phenomenon of degradation which can have a significant influence on maintenance time and cost of core internals of a Pressurized Water Reactor (PWR). Hence, it is an issue of concern, especially in the context of lifetime extension...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of nuclear materials 2018-04, Vol.501, p.45-58
Hauptverfasser: Gupta, J., Hure, J., Tanguy, B., Laffont, L., Lafont, M.-C., Andrieu, E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 58
container_issue
container_start_page 45
container_title Journal of nuclear materials
container_volume 501
creator Gupta, J.
Hure, J.
Tanguy, B.
Laffont, L.
Lafont, M.-C.
Andrieu, E.
description Irradiation Assisted Stress Corrosion Cracking (IASCC) is a complex phenomenon of degradation which can have a significant influence on maintenance time and cost of core internals of a Pressurized Water Reactor (PWR). Hence, it is an issue of concern, especially in the context of lifetime extension of PWRs. Proton irradiation is generally used as a representative alternative of neutron irradiation to improve the current understanding of the mechanisms involved in IASCC. This study assesses the possibility of using heavy ions irradiation to evaluate IASCC mechanisms by comparing the irradiation induced modifications (in microstructure and mechanical properties) and cracking susceptibility of SA 304 L after both type of irradiations: Fe irradiation at 450 °C and proton irradiation at 350 °C. Irradiation-induced defects are characterized and quantified along with nano-hardness measurements, showing a correlation between irradiation hardening and density of Frank loops that is well captured by Orowan's formula. Both irradiations (iron and proton) increase the susceptibility of SA 304 L to intergranular cracking on subjection to Constant Extension Rate Tensile tests (CERT) in simulated nominal PWR primary water environment at 340 °C. For these conditions, cracking susceptibility is found to be quantitatively similar for both irradiations, despite significant differences in hardening and degree of localization.
doi_str_mv 10.1016/j.jnucmat.2018.01.013
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01780338v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022311517311200</els_id><sourcerecordid>2064413382</sourcerecordid><originalsourceid>FETCH-LOGICAL-c418t-8c1d415bbb580c0f43053edd07060ab0d7e3edef6ec1ac3a4c7ce3dfab3d7533</originalsourceid><addsrcrecordid>eNqFUcGKFDEQDaLguPoJQsCTsD1WOt3TrRdZBnUWBrzsPVQnFSbtTGdN0g3rJ_mVJvTgdaGgKpVXr17yGHsvYCtA7D6N23Ga9QXTtgbRb0HkkC_YRvSdrJq-hpdsA1DXlRSifc3exDgCQPsZ2g37uz9hQJ0ouD-YnJ-4t7wkFwIat7bIWtIp8lymE_GL08HHFGad5kC3PDOYiWK85YasD5d1CCfDdab-xd3k0pVpoBMuzoeyBeeYqFxpHhO66ZwpckV0_nIgXJ6KjMiXyB-DT7l8y15ZPEd6d8037OH7t4f9oTr-_HG_vztWuhF9qnotTCPaYRjaHjTYRkIryRjoYAc4gOkoH8nuSAvUEhvdaZLG4iBN10p5wz6utCc8q8fgLhielEenDndHVXoguh6k7BeRsR9WbJb4e6aY1OjnMGV1qoZd04gMqzOqXVHl22Ig-59WgCoOqlFdHVTFwbwhR1HydZ2j_NrFUVBRO5o0GReyH8p49wzDP4O1rIc</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2064413382</pqid></control><display><type>article</type><title>Characterization of ion irradiation effects on the microstructure, hardness, deformation and crack initiation behavior of austenitic stainless steel:Heavy ions vs protons</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Gupta, J. ; Hure, J. ; Tanguy, B. ; Laffont, L. ; Lafont, M.-C. ; Andrieu, E.</creator><creatorcontrib>Gupta, J. ; Hure, J. ; Tanguy, B. ; Laffont, L. ; Lafont, M.-C. ; Andrieu, E.</creatorcontrib><description>Irradiation Assisted Stress Corrosion Cracking (IASCC) is a complex phenomenon of degradation which can have a significant influence on maintenance time and cost of core internals of a Pressurized Water Reactor (PWR). Hence, it is an issue of concern, especially in the context of lifetime extension of PWRs. Proton irradiation is generally used as a representative alternative of neutron irradiation to improve the current understanding of the mechanisms involved in IASCC. This study assesses the possibility of using heavy ions irradiation to evaluate IASCC mechanisms by comparing the irradiation induced modifications (in microstructure and mechanical properties) and cracking susceptibility of SA 304 L after both type of irradiations: Fe irradiation at 450 °C and proton irradiation at 350 °C. Irradiation-induced defects are characterized and quantified along with nano-hardness measurements, showing a correlation between irradiation hardening and density of Frank loops that is well captured by Orowan's formula. Both irradiations (iron and proton) increase the susceptibility of SA 304 L to intergranular cracking on subjection to Constant Extension Rate Tensile tests (CERT) in simulated nominal PWR primary water environment at 340 °C. For these conditions, cracking susceptibility is found to be quantitatively similar for both irradiations, despite significant differences in hardening and degree of localization.</description><identifier>ISSN: 0022-3115</identifier><identifier>EISSN: 1873-4820</identifier><identifier>DOI: 10.1016/j.jnucmat.2018.01.013</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Austenitic stainless steel ; Austenitic stainless steels ; Computer simulation ; Condensed Matter ; Correlation analysis ; Crack initiation ; Crack propagation ; Deformation ; Deformation effects ; Deformation mechanisms ; Hardening ; Hardness ; Heavy ions ; Ion irradiation ; Iron ; Irradiation ; Localization ; Marine environment ; Materials Science ; Mechanical properties ; Mechanics ; Mechanics of materials ; Microstructure ; Neutron irradiation ; Nuclear energy ; Physics ; Pressurized water ; Pressurized water reactors ; Proton irradiation ; Protons ; Stainless steel ; Stress corrosion ; Stress corrosion cracking ; Tensile tests</subject><ispartof>Journal of nuclear materials, 2018-04, Vol.501, p.45-58</ispartof><rights>2018 Elsevier B.V.</rights><rights>Copyright Elsevier BV Apr 2018</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c418t-8c1d415bbb580c0f43053edd07060ab0d7e3edef6ec1ac3a4c7ce3dfab3d7533</citedby><cites>FETCH-LOGICAL-c418t-8c1d415bbb580c0f43053edd07060ab0d7e3edef6ec1ac3a4c7ce3dfab3d7533</cites><orcidid>0000-0003-4002-793X ; 0000-0001-8292-5039</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jnucmat.2018.01.013$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://hal.science/hal-01780338$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Gupta, J.</creatorcontrib><creatorcontrib>Hure, J.</creatorcontrib><creatorcontrib>Tanguy, B.</creatorcontrib><creatorcontrib>Laffont, L.</creatorcontrib><creatorcontrib>Lafont, M.-C.</creatorcontrib><creatorcontrib>Andrieu, E.</creatorcontrib><title>Characterization of ion irradiation effects on the microstructure, hardness, deformation and crack initiation behavior of austenitic stainless steel:Heavy ions vs protons</title><title>Journal of nuclear materials</title><description>Irradiation Assisted Stress Corrosion Cracking (IASCC) is a complex phenomenon of degradation which can have a significant influence on maintenance time and cost of core internals of a Pressurized Water Reactor (PWR). Hence, it is an issue of concern, especially in the context of lifetime extension of PWRs. Proton irradiation is generally used as a representative alternative of neutron irradiation to improve the current understanding of the mechanisms involved in IASCC. This study assesses the possibility of using heavy ions irradiation to evaluate IASCC mechanisms by comparing the irradiation induced modifications (in microstructure and mechanical properties) and cracking susceptibility of SA 304 L after both type of irradiations: Fe irradiation at 450 °C and proton irradiation at 350 °C. Irradiation-induced defects are characterized and quantified along with nano-hardness measurements, showing a correlation between irradiation hardening and density of Frank loops that is well captured by Orowan's formula. Both irradiations (iron and proton) increase the susceptibility of SA 304 L to intergranular cracking on subjection to Constant Extension Rate Tensile tests (CERT) in simulated nominal PWR primary water environment at 340 °C. For these conditions, cracking susceptibility is found to be quantitatively similar for both irradiations, despite significant differences in hardening and degree of localization.</description><subject>Austenitic stainless steel</subject><subject>Austenitic stainless steels</subject><subject>Computer simulation</subject><subject>Condensed Matter</subject><subject>Correlation analysis</subject><subject>Crack initiation</subject><subject>Crack propagation</subject><subject>Deformation</subject><subject>Deformation effects</subject><subject>Deformation mechanisms</subject><subject>Hardening</subject><subject>Hardness</subject><subject>Heavy ions</subject><subject>Ion irradiation</subject><subject>Iron</subject><subject>Irradiation</subject><subject>Localization</subject><subject>Marine environment</subject><subject>Materials Science</subject><subject>Mechanical properties</subject><subject>Mechanics</subject><subject>Mechanics of materials</subject><subject>Microstructure</subject><subject>Neutron irradiation</subject><subject>Nuclear energy</subject><subject>Physics</subject><subject>Pressurized water</subject><subject>Pressurized water reactors</subject><subject>Proton irradiation</subject><subject>Protons</subject><subject>Stainless steel</subject><subject>Stress corrosion</subject><subject>Stress corrosion cracking</subject><subject>Tensile tests</subject><issn>0022-3115</issn><issn>1873-4820</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqFUcGKFDEQDaLguPoJQsCTsD1WOt3TrRdZBnUWBrzsPVQnFSbtTGdN0g3rJ_mVJvTgdaGgKpVXr17yGHsvYCtA7D6N23Ga9QXTtgbRb0HkkC_YRvSdrJq-hpdsA1DXlRSifc3exDgCQPsZ2g37uz9hQJ0ouD-YnJ-4t7wkFwIat7bIWtIp8lymE_GL08HHFGad5kC3PDOYiWK85YasD5d1CCfDdab-xd3k0pVpoBMuzoeyBeeYqFxpHhO66ZwpckV0_nIgXJ6KjMiXyB-DT7l8y15ZPEd6d8037OH7t4f9oTr-_HG_vztWuhF9qnotTCPaYRjaHjTYRkIryRjoYAc4gOkoH8nuSAvUEhvdaZLG4iBN10p5wz6utCc8q8fgLhielEenDndHVXoguh6k7BeRsR9WbJb4e6aY1OjnMGV1qoZd04gMqzOqXVHl22Ig-59WgCoOqlFdHVTFwbwhR1HydZ2j_NrFUVBRO5o0GReyH8p49wzDP4O1rIc</recordid><startdate>20180401</startdate><enddate>20180401</enddate><creator>Gupta, J.</creator><creator>Hure, J.</creator><creator>Tanguy, B.</creator><creator>Laffont, L.</creator><creator>Lafont, M.-C.</creator><creator>Andrieu, E.</creator><general>Elsevier B.V</general><general>Elsevier BV</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QQ</scope><scope>7SR</scope><scope>7ST</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope><scope>SOI</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0003-4002-793X</orcidid><orcidid>https://orcid.org/0000-0001-8292-5039</orcidid></search><sort><creationdate>20180401</creationdate><title>Characterization of ion irradiation effects on the microstructure, hardness, deformation and crack initiation behavior of austenitic stainless steel:Heavy ions vs protons</title><author>Gupta, J. ; Hure, J. ; Tanguy, B. ; Laffont, L. ; Lafont, M.-C. ; Andrieu, E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c418t-8c1d415bbb580c0f43053edd07060ab0d7e3edef6ec1ac3a4c7ce3dfab3d7533</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Austenitic stainless steel</topic><topic>Austenitic stainless steels</topic><topic>Computer simulation</topic><topic>Condensed Matter</topic><topic>Correlation analysis</topic><topic>Crack initiation</topic><topic>Crack propagation</topic><topic>Deformation</topic><topic>Deformation effects</topic><topic>Deformation mechanisms</topic><topic>Hardening</topic><topic>Hardness</topic><topic>Heavy ions</topic><topic>Ion irradiation</topic><topic>Iron</topic><topic>Irradiation</topic><topic>Localization</topic><topic>Marine environment</topic><topic>Materials Science</topic><topic>Mechanical properties</topic><topic>Mechanics</topic><topic>Mechanics of materials</topic><topic>Microstructure</topic><topic>Neutron irradiation</topic><topic>Nuclear energy</topic><topic>Physics</topic><topic>Pressurized water</topic><topic>Pressurized water reactors</topic><topic>Proton irradiation</topic><topic>Protons</topic><topic>Stainless steel</topic><topic>Stress corrosion</topic><topic>Stress corrosion cracking</topic><topic>Tensile tests</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gupta, J.</creatorcontrib><creatorcontrib>Hure, J.</creatorcontrib><creatorcontrib>Tanguy, B.</creatorcontrib><creatorcontrib>Laffont, L.</creatorcontrib><creatorcontrib>Lafont, M.-C.</creatorcontrib><creatorcontrib>Andrieu, E.</creatorcontrib><collection>CrossRef</collection><collection>Ceramic Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Journal of nuclear materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gupta, J.</au><au>Hure, J.</au><au>Tanguy, B.</au><au>Laffont, L.</au><au>Lafont, M.-C.</au><au>Andrieu, E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Characterization of ion irradiation effects on the microstructure, hardness, deformation and crack initiation behavior of austenitic stainless steel:Heavy ions vs protons</atitle><jtitle>Journal of nuclear materials</jtitle><date>2018-04-01</date><risdate>2018</risdate><volume>501</volume><spage>45</spage><epage>58</epage><pages>45-58</pages><issn>0022-3115</issn><eissn>1873-4820</eissn><abstract>Irradiation Assisted Stress Corrosion Cracking (IASCC) is a complex phenomenon of degradation which can have a significant influence on maintenance time and cost of core internals of a Pressurized Water Reactor (PWR). Hence, it is an issue of concern, especially in the context of lifetime extension of PWRs. Proton irradiation is generally used as a representative alternative of neutron irradiation to improve the current understanding of the mechanisms involved in IASCC. This study assesses the possibility of using heavy ions irradiation to evaluate IASCC mechanisms by comparing the irradiation induced modifications (in microstructure and mechanical properties) and cracking susceptibility of SA 304 L after both type of irradiations: Fe irradiation at 450 °C and proton irradiation at 350 °C. Irradiation-induced defects are characterized and quantified along with nano-hardness measurements, showing a correlation between irradiation hardening and density of Frank loops that is well captured by Orowan's formula. Both irradiations (iron and proton) increase the susceptibility of SA 304 L to intergranular cracking on subjection to Constant Extension Rate Tensile tests (CERT) in simulated nominal PWR primary water environment at 340 °C. For these conditions, cracking susceptibility is found to be quantitatively similar for both irradiations, despite significant differences in hardening and degree of localization.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jnucmat.2018.01.013</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0003-4002-793X</orcidid><orcidid>https://orcid.org/0000-0001-8292-5039</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-3115
ispartof Journal of nuclear materials, 2018-04, Vol.501, p.45-58
issn 0022-3115
1873-4820
language eng
recordid cdi_hal_primary_oai_HAL_hal_01780338v1
source ScienceDirect Journals (5 years ago - present)
subjects Austenitic stainless steel
Austenitic stainless steels
Computer simulation
Condensed Matter
Correlation analysis
Crack initiation
Crack propagation
Deformation
Deformation effects
Deformation mechanisms
Hardening
Hardness
Heavy ions
Ion irradiation
Iron
Irradiation
Localization
Marine environment
Materials Science
Mechanical properties
Mechanics
Mechanics of materials
Microstructure
Neutron irradiation
Nuclear energy
Physics
Pressurized water
Pressurized water reactors
Proton irradiation
Protons
Stainless steel
Stress corrosion
Stress corrosion cracking
Tensile tests
title Characterization of ion irradiation effects on the microstructure, hardness, deformation and crack initiation behavior of austenitic stainless steel:Heavy ions vs protons
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T20%3A33%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Characterization%20of%20ion%20irradiation%20effects%20on%20the%20microstructure,%20hardness,%20deformation%20and%20crack%20initiation%20behavior%20of%20austenitic%20stainless%20steel:Heavy%20ions%20vs%20protons&rft.jtitle=Journal%20of%20nuclear%20materials&rft.au=Gupta,%20J.&rft.date=2018-04-01&rft.volume=501&rft.spage=45&rft.epage=58&rft.pages=45-58&rft.issn=0022-3115&rft.eissn=1873-4820&rft_id=info:doi/10.1016/j.jnucmat.2018.01.013&rft_dat=%3Cproquest_hal_p%3E2064413382%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2064413382&rft_id=info:pmid/&rft_els_id=S0022311517311200&rfr_iscdi=true