Assessment of the apparent bending stiffness and damping of multilayer plates; modelling and experiment

In the context of aeronautics, automotive and construction applications, the design of light multilayer plates with optimized vibroacoustical damping and isolation performances remains a major industrial challenge and a hot topic of research. This paper focuses on the vibrational behavior of three-l...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of sound and vibration 2018-07, Vol.426, p.129-149
Hauptverfasser: Ege, Kerem, Roozen, N.B., Leclère, Quentin, Rinaldi, Renaud G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 149
container_issue
container_start_page 129
container_title Journal of sound and vibration
container_volume 426
creator Ege, Kerem
Roozen, N.B.
Leclère, Quentin
Rinaldi, Renaud G.
description In the context of aeronautics, automotive and construction applications, the design of light multilayer plates with optimized vibroacoustical damping and isolation performances remains a major industrial challenge and a hot topic of research. This paper focuses on the vibrational behavior of three-layered sandwich composite plates in a broad-band frequency range. Several aspects are studied through measurement techniques and analytical modelling of a steel/polymer/steel plate sandwich system. A contactless measurement of the velocity field of plates using a scanning laser vibrometer is performed, from which the equivalent single layer complex rigidity (apparent bending stiffness and apparent damping) in the mid/high frequency ranges is estimated. The results are combined with low/mid frequency estimations obtained with a high-resolution modal analysis method so that the frequency dependent equivalent Young's modulus and equivalent loss factor of the composite plate are identified for the whole [40 Hz-20 kHz] frequency band. The results are in very good agreement with an equivalent single layer analytical modelling based on wave propagation analysis (model of Guyader). The comparison with this model allows identifying the frequency dependent complex modulus of the polymer core layer through inverse resolution. Dynamical mechanical analysis measurements are also performed on the polymer layer alone and compared with the values obtained through the inverse method. Again, a good agreement between these two estimations over the broad-band frequency range demonstrates the validity of the approach. •Determination of material properties of sandwich plates from experimental vibrational fields.•Frequency dependent apparent stiffness and apparent damping of three-layered sandwich plates.•Comparisons of measured/predicted frequency dependent equivalent complex modulus.•Inverse vibrational method to identify polymer characteristics up to 20 kHz.•Comparisons with Dynamic Mechanical Analysis measurements.
doi_str_mv 10.1016/j.jsv.2018.04.013
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01778160v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022460X18302384</els_id><sourcerecordid>2086828250</sourcerecordid><originalsourceid>FETCH-LOGICAL-c402t-90a15031afa01653614c70621eca2c8b6ff69de23ccae1c32fd7cfff75b84bd53</originalsourceid><addsrcrecordid>eNp9kD9PwzAQxS0EEqXwAdgiMTEknJ3EcdWpqvgnVWIBic1y7XPrKE2CnVb02-OoiJHJ8t3vvbt7hNxSyChQ_lBndThkDKjIoMiA5mdkQmFWpqLk4pxMABhLCw6fl-QqhBoAZkVeTMhmEQKGsMN2SDqbDFtMVN8rP_7X2BrXbpIwOGvbSCWqNYlRu36sRnq3bwbXqCP6pG_UgGGe7DqDTTP2Rxa_e_RuNL8mF1Y1AW9-3yn5eHp8X76kq7fn1-VileoC2JDOQNEScqqsileVOaeFroAziloxLdbcWj4zyHKtFVKdM2sqba2tyrUo1qbMp-T-5LtVjezjbOWPslNOvixWcqwBrSpBORxoZO9ObO-7rz2GQdbd3rdxPclAcMEEi7tMCT1R2ncheLR_thTkmL2sZcxejtlLKOKAPGrmJw3GUw8OvQzaYavROI96kKZz_6h_AF7DjZc</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2086828250</pqid></control><display><type>article</type><title>Assessment of the apparent bending stiffness and damping of multilayer plates; modelling and experiment</title><source>Elsevier ScienceDirect Journals</source><creator>Ege, Kerem ; Roozen, N.B. ; Leclère, Quentin ; Rinaldi, Renaud G.</creator><creatorcontrib>Ege, Kerem ; Roozen, N.B. ; Leclère, Quentin ; Rinaldi, Renaud G.</creatorcontrib><description>In the context of aeronautics, automotive and construction applications, the design of light multilayer plates with optimized vibroacoustical damping and isolation performances remains a major industrial challenge and a hot topic of research. This paper focuses on the vibrational behavior of three-layered sandwich composite plates in a broad-band frequency range. Several aspects are studied through measurement techniques and analytical modelling of a steel/polymer/steel plate sandwich system. A contactless measurement of the velocity field of plates using a scanning laser vibrometer is performed, from which the equivalent single layer complex rigidity (apparent bending stiffness and apparent damping) in the mid/high frequency ranges is estimated. The results are combined with low/mid frequency estimations obtained with a high-resolution modal analysis method so that the frequency dependent equivalent Young's modulus and equivalent loss factor of the composite plate are identified for the whole [40 Hz-20 kHz] frequency band. The results are in very good agreement with an equivalent single layer analytical modelling based on wave propagation analysis (model of Guyader). The comparison with this model allows identifying the frequency dependent complex modulus of the polymer core layer through inverse resolution. Dynamical mechanical analysis measurements are also performed on the polymer layer alone and compared with the values obtained through the inverse method. Again, a good agreement between these two estimations over the broad-band frequency range demonstrates the validity of the approach. •Determination of material properties of sandwich plates from experimental vibrational fields.•Frequency dependent apparent stiffness and apparent damping of three-layered sandwich plates.•Comparisons of measured/predicted frequency dependent equivalent complex modulus.•Inverse vibrational method to identify polymer characteristics up to 20 kHz.•Comparisons with Dynamic Mechanical Analysis measurements.</description><identifier>ISSN: 0022-460X</identifier><identifier>EISSN: 1095-8568</identifier><identifier>DOI: 10.1016/j.jsv.2018.04.013</identifier><language>eng</language><publisher>Amsterdam: Elsevier Ltd</publisher><subject>Accuracy ; Aeronautics ; Apparent bending stiffness and apparent loss factor ; Automobile industry ; Automotive engineering ; Bending ; Bending stresses ; Broadband ; Composite structures ; Damping ; Design optimization ; Determination of viscoelastic material properties ; DMA/vibratory comparisons ; Equivalence ; Equivalent plate model ; Frequency ranges ; Hybrid sandwich panels ; Inverse method ; Mathematical models ; Mechanical analysis ; Mechanics ; Modal analysis ; Modelling ; Modulus of elasticity ; Multilayers ; Physics ; Polymers ; Prediction/measurement comparisons ; Steel plates ; Stiffness ; Velocity distribution ; Vibration analysis ; Vibration meters ; Vibrations ; Wave propagation</subject><ispartof>Journal of sound and vibration, 2018-07, Vol.426, p.129-149</ispartof><rights>2018 Elsevier Ltd</rights><rights>Copyright Elsevier Science Ltd. Jul 21, 2018</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c402t-90a15031afa01653614c70621eca2c8b6ff69de23ccae1c32fd7cfff75b84bd53</citedby><cites>FETCH-LOGICAL-c402t-90a15031afa01653614c70621eca2c8b6ff69de23ccae1c32fd7cfff75b84bd53</cites><orcidid>0000-0001-7066-891X ; 0000-0001-6448-6183 ; 0000-0002-5657-3495</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jsv.2018.04.013$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3536,27903,27904,45974</link.rule.ids><backlink>$$Uhttps://hal.science/hal-01778160$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Ege, Kerem</creatorcontrib><creatorcontrib>Roozen, N.B.</creatorcontrib><creatorcontrib>Leclère, Quentin</creatorcontrib><creatorcontrib>Rinaldi, Renaud G.</creatorcontrib><title>Assessment of the apparent bending stiffness and damping of multilayer plates; modelling and experiment</title><title>Journal of sound and vibration</title><description>In the context of aeronautics, automotive and construction applications, the design of light multilayer plates with optimized vibroacoustical damping and isolation performances remains a major industrial challenge and a hot topic of research. This paper focuses on the vibrational behavior of three-layered sandwich composite plates in a broad-band frequency range. Several aspects are studied through measurement techniques and analytical modelling of a steel/polymer/steel plate sandwich system. A contactless measurement of the velocity field of plates using a scanning laser vibrometer is performed, from which the equivalent single layer complex rigidity (apparent bending stiffness and apparent damping) in the mid/high frequency ranges is estimated. The results are combined with low/mid frequency estimations obtained with a high-resolution modal analysis method so that the frequency dependent equivalent Young's modulus and equivalent loss factor of the composite plate are identified for the whole [40 Hz-20 kHz] frequency band. The results are in very good agreement with an equivalent single layer analytical modelling based on wave propagation analysis (model of Guyader). The comparison with this model allows identifying the frequency dependent complex modulus of the polymer core layer through inverse resolution. Dynamical mechanical analysis measurements are also performed on the polymer layer alone and compared with the values obtained through the inverse method. Again, a good agreement between these two estimations over the broad-band frequency range demonstrates the validity of the approach. •Determination of material properties of sandwich plates from experimental vibrational fields.•Frequency dependent apparent stiffness and apparent damping of three-layered sandwich plates.•Comparisons of measured/predicted frequency dependent equivalent complex modulus.•Inverse vibrational method to identify polymer characteristics up to 20 kHz.•Comparisons with Dynamic Mechanical Analysis measurements.</description><subject>Accuracy</subject><subject>Aeronautics</subject><subject>Apparent bending stiffness and apparent loss factor</subject><subject>Automobile industry</subject><subject>Automotive engineering</subject><subject>Bending</subject><subject>Bending stresses</subject><subject>Broadband</subject><subject>Composite structures</subject><subject>Damping</subject><subject>Design optimization</subject><subject>Determination of viscoelastic material properties</subject><subject>DMA/vibratory comparisons</subject><subject>Equivalence</subject><subject>Equivalent plate model</subject><subject>Frequency ranges</subject><subject>Hybrid sandwich panels</subject><subject>Inverse method</subject><subject>Mathematical models</subject><subject>Mechanical analysis</subject><subject>Mechanics</subject><subject>Modal analysis</subject><subject>Modelling</subject><subject>Modulus of elasticity</subject><subject>Multilayers</subject><subject>Physics</subject><subject>Polymers</subject><subject>Prediction/measurement comparisons</subject><subject>Steel plates</subject><subject>Stiffness</subject><subject>Velocity distribution</subject><subject>Vibration analysis</subject><subject>Vibration meters</subject><subject>Vibrations</subject><subject>Wave propagation</subject><issn>0022-460X</issn><issn>1095-8568</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kD9PwzAQxS0EEqXwAdgiMTEknJ3EcdWpqvgnVWIBic1y7XPrKE2CnVb02-OoiJHJ8t3vvbt7hNxSyChQ_lBndThkDKjIoMiA5mdkQmFWpqLk4pxMABhLCw6fl-QqhBoAZkVeTMhmEQKGsMN2SDqbDFtMVN8rP_7X2BrXbpIwOGvbSCWqNYlRu36sRnq3bwbXqCP6pG_UgGGe7DqDTTP2Rxa_e_RuNL8mF1Y1AW9-3yn5eHp8X76kq7fn1-VileoC2JDOQNEScqqsileVOaeFroAziloxLdbcWj4zyHKtFVKdM2sqba2tyrUo1qbMp-T-5LtVjezjbOWPslNOvixWcqwBrSpBORxoZO9ObO-7rz2GQdbd3rdxPclAcMEEi7tMCT1R2ncheLR_thTkmL2sZcxejtlLKOKAPGrmJw3GUw8OvQzaYavROI96kKZz_6h_AF7DjZc</recordid><startdate>20180721</startdate><enddate>20180721</enddate><creator>Ege, Kerem</creator><creator>Roozen, N.B.</creator><creator>Leclère, Quentin</creator><creator>Rinaldi, Renaud G.</creator><general>Elsevier Ltd</general><general>Elsevier Science Ltd</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0001-7066-891X</orcidid><orcidid>https://orcid.org/0000-0001-6448-6183</orcidid><orcidid>https://orcid.org/0000-0002-5657-3495</orcidid></search><sort><creationdate>20180721</creationdate><title>Assessment of the apparent bending stiffness and damping of multilayer plates; modelling and experiment</title><author>Ege, Kerem ; Roozen, N.B. ; Leclère, Quentin ; Rinaldi, Renaud G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c402t-90a15031afa01653614c70621eca2c8b6ff69de23ccae1c32fd7cfff75b84bd53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Accuracy</topic><topic>Aeronautics</topic><topic>Apparent bending stiffness and apparent loss factor</topic><topic>Automobile industry</topic><topic>Automotive engineering</topic><topic>Bending</topic><topic>Bending stresses</topic><topic>Broadband</topic><topic>Composite structures</topic><topic>Damping</topic><topic>Design optimization</topic><topic>Determination of viscoelastic material properties</topic><topic>DMA/vibratory comparisons</topic><topic>Equivalence</topic><topic>Equivalent plate model</topic><topic>Frequency ranges</topic><topic>Hybrid sandwich panels</topic><topic>Inverse method</topic><topic>Mathematical models</topic><topic>Mechanical analysis</topic><topic>Mechanics</topic><topic>Modal analysis</topic><topic>Modelling</topic><topic>Modulus of elasticity</topic><topic>Multilayers</topic><topic>Physics</topic><topic>Polymers</topic><topic>Prediction/measurement comparisons</topic><topic>Steel plates</topic><topic>Stiffness</topic><topic>Velocity distribution</topic><topic>Vibration analysis</topic><topic>Vibration meters</topic><topic>Vibrations</topic><topic>Wave propagation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ege, Kerem</creatorcontrib><creatorcontrib>Roozen, N.B.</creatorcontrib><creatorcontrib>Leclère, Quentin</creatorcontrib><creatorcontrib>Rinaldi, Renaud G.</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Journal of sound and vibration</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ege, Kerem</au><au>Roozen, N.B.</au><au>Leclère, Quentin</au><au>Rinaldi, Renaud G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Assessment of the apparent bending stiffness and damping of multilayer plates; modelling and experiment</atitle><jtitle>Journal of sound and vibration</jtitle><date>2018-07-21</date><risdate>2018</risdate><volume>426</volume><spage>129</spage><epage>149</epage><pages>129-149</pages><issn>0022-460X</issn><eissn>1095-8568</eissn><abstract>In the context of aeronautics, automotive and construction applications, the design of light multilayer plates with optimized vibroacoustical damping and isolation performances remains a major industrial challenge and a hot topic of research. This paper focuses on the vibrational behavior of three-layered sandwich composite plates in a broad-band frequency range. Several aspects are studied through measurement techniques and analytical modelling of a steel/polymer/steel plate sandwich system. A contactless measurement of the velocity field of plates using a scanning laser vibrometer is performed, from which the equivalent single layer complex rigidity (apparent bending stiffness and apparent damping) in the mid/high frequency ranges is estimated. The results are combined with low/mid frequency estimations obtained with a high-resolution modal analysis method so that the frequency dependent equivalent Young's modulus and equivalent loss factor of the composite plate are identified for the whole [40 Hz-20 kHz] frequency band. The results are in very good agreement with an equivalent single layer analytical modelling based on wave propagation analysis (model of Guyader). The comparison with this model allows identifying the frequency dependent complex modulus of the polymer core layer through inverse resolution. Dynamical mechanical analysis measurements are also performed on the polymer layer alone and compared with the values obtained through the inverse method. Again, a good agreement between these two estimations over the broad-band frequency range demonstrates the validity of the approach. •Determination of material properties of sandwich plates from experimental vibrational fields.•Frequency dependent apparent stiffness and apparent damping of three-layered sandwich plates.•Comparisons of measured/predicted frequency dependent equivalent complex modulus.•Inverse vibrational method to identify polymer characteristics up to 20 kHz.•Comparisons with Dynamic Mechanical Analysis measurements.</abstract><cop>Amsterdam</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.jsv.2018.04.013</doi><tpages>21</tpages><orcidid>https://orcid.org/0000-0001-7066-891X</orcidid><orcidid>https://orcid.org/0000-0001-6448-6183</orcidid><orcidid>https://orcid.org/0000-0002-5657-3495</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-460X
ispartof Journal of sound and vibration, 2018-07, Vol.426, p.129-149
issn 0022-460X
1095-8568
language eng
recordid cdi_hal_primary_oai_HAL_hal_01778160v1
source Elsevier ScienceDirect Journals
subjects Accuracy
Aeronautics
Apparent bending stiffness and apparent loss factor
Automobile industry
Automotive engineering
Bending
Bending stresses
Broadband
Composite structures
Damping
Design optimization
Determination of viscoelastic material properties
DMA/vibratory comparisons
Equivalence
Equivalent plate model
Frequency ranges
Hybrid sandwich panels
Inverse method
Mathematical models
Mechanical analysis
Mechanics
Modal analysis
Modelling
Modulus of elasticity
Multilayers
Physics
Polymers
Prediction/measurement comparisons
Steel plates
Stiffness
Velocity distribution
Vibration analysis
Vibration meters
Vibrations
Wave propagation
title Assessment of the apparent bending stiffness and damping of multilayer plates; modelling and experiment
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T03%3A50%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Assessment%20of%20the%20apparent%20bending%20stiffness%20and%20damping%20of%20multilayer%20plates;%20modelling%20and%20experiment&rft.jtitle=Journal%20of%20sound%20and%20vibration&rft.au=Ege,%20Kerem&rft.date=2018-07-21&rft.volume=426&rft.spage=129&rft.epage=149&rft.pages=129-149&rft.issn=0022-460X&rft.eissn=1095-8568&rft_id=info:doi/10.1016/j.jsv.2018.04.013&rft_dat=%3Cproquest_hal_p%3E2086828250%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2086828250&rft_id=info:pmid/&rft_els_id=S0022460X18302384&rfr_iscdi=true