Assessment of the apparent bending stiffness and damping of multilayer plates; modelling and experiment
In the context of aeronautics, automotive and construction applications, the design of light multilayer plates with optimized vibroacoustical damping and isolation performances remains a major industrial challenge and a hot topic of research. This paper focuses on the vibrational behavior of three-l...
Gespeichert in:
Veröffentlicht in: | Journal of sound and vibration 2018-07, Vol.426, p.129-149 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 149 |
---|---|
container_issue | |
container_start_page | 129 |
container_title | Journal of sound and vibration |
container_volume | 426 |
creator | Ege, Kerem Roozen, N.B. Leclère, Quentin Rinaldi, Renaud G. |
description | In the context of aeronautics, automotive and construction applications, the design of light multilayer plates with optimized vibroacoustical damping and isolation performances remains a major industrial challenge and a hot topic of research. This paper focuses on the vibrational behavior of three-layered sandwich composite plates in a broad-band frequency range. Several aspects are studied through measurement techniques and analytical modelling of a steel/polymer/steel plate sandwich system. A contactless measurement of the velocity field of plates using a scanning laser vibrometer is performed, from which the equivalent single layer complex rigidity (apparent bending stiffness and apparent damping) in the mid/high frequency ranges is estimated. The results are combined with low/mid frequency estimations obtained with a high-resolution modal analysis method so that the frequency dependent equivalent Young's modulus and equivalent loss factor of the composite plate are identified for the whole [40 Hz-20 kHz] frequency band. The results are in very good agreement with an equivalent single layer analytical modelling based on wave propagation analysis (model of Guyader). The comparison with this model allows identifying the frequency dependent complex modulus of the polymer core layer through inverse resolution. Dynamical mechanical analysis measurements are also performed on the polymer layer alone and compared with the values obtained through the inverse method. Again, a good agreement between these two estimations over the broad-band frequency range demonstrates the validity of the approach.
•Determination of material properties of sandwich plates from experimental vibrational fields.•Frequency dependent apparent stiffness and apparent damping of three-layered sandwich plates.•Comparisons of measured/predicted frequency dependent equivalent complex modulus.•Inverse vibrational method to identify polymer characteristics up to 20 kHz.•Comparisons with Dynamic Mechanical Analysis measurements. |
doi_str_mv | 10.1016/j.jsv.2018.04.013 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01778160v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022460X18302384</els_id><sourcerecordid>2086828250</sourcerecordid><originalsourceid>FETCH-LOGICAL-c402t-90a15031afa01653614c70621eca2c8b6ff69de23ccae1c32fd7cfff75b84bd53</originalsourceid><addsrcrecordid>eNp9kD9PwzAQxS0EEqXwAdgiMTEknJ3EcdWpqvgnVWIBic1y7XPrKE2CnVb02-OoiJHJ8t3vvbt7hNxSyChQ_lBndThkDKjIoMiA5mdkQmFWpqLk4pxMABhLCw6fl-QqhBoAZkVeTMhmEQKGsMN2SDqbDFtMVN8rP_7X2BrXbpIwOGvbSCWqNYlRu36sRnq3bwbXqCP6pG_UgGGe7DqDTTP2Rxa_e_RuNL8mF1Y1AW9-3yn5eHp8X76kq7fn1-VileoC2JDOQNEScqqsileVOaeFroAziloxLdbcWj4zyHKtFVKdM2sqba2tyrUo1qbMp-T-5LtVjezjbOWPslNOvixWcqwBrSpBORxoZO9ObO-7rz2GQdbd3rdxPclAcMEEi7tMCT1R2ncheLR_thTkmL2sZcxejtlLKOKAPGrmJw3GUw8OvQzaYavROI96kKZz_6h_AF7DjZc</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2086828250</pqid></control><display><type>article</type><title>Assessment of the apparent bending stiffness and damping of multilayer plates; modelling and experiment</title><source>Elsevier ScienceDirect Journals</source><creator>Ege, Kerem ; Roozen, N.B. ; Leclère, Quentin ; Rinaldi, Renaud G.</creator><creatorcontrib>Ege, Kerem ; Roozen, N.B. ; Leclère, Quentin ; Rinaldi, Renaud G.</creatorcontrib><description>In the context of aeronautics, automotive and construction applications, the design of light multilayer plates with optimized vibroacoustical damping and isolation performances remains a major industrial challenge and a hot topic of research. This paper focuses on the vibrational behavior of three-layered sandwich composite plates in a broad-band frequency range. Several aspects are studied through measurement techniques and analytical modelling of a steel/polymer/steel plate sandwich system. A contactless measurement of the velocity field of plates using a scanning laser vibrometer is performed, from which the equivalent single layer complex rigidity (apparent bending stiffness and apparent damping) in the mid/high frequency ranges is estimated. The results are combined with low/mid frequency estimations obtained with a high-resolution modal analysis method so that the frequency dependent equivalent Young's modulus and equivalent loss factor of the composite plate are identified for the whole [40 Hz-20 kHz] frequency band. The results are in very good agreement with an equivalent single layer analytical modelling based on wave propagation analysis (model of Guyader). The comparison with this model allows identifying the frequency dependent complex modulus of the polymer core layer through inverse resolution. Dynamical mechanical analysis measurements are also performed on the polymer layer alone and compared with the values obtained through the inverse method. Again, a good agreement between these two estimations over the broad-band frequency range demonstrates the validity of the approach.
•Determination of material properties of sandwich plates from experimental vibrational fields.•Frequency dependent apparent stiffness and apparent damping of three-layered sandwich plates.•Comparisons of measured/predicted frequency dependent equivalent complex modulus.•Inverse vibrational method to identify polymer characteristics up to 20 kHz.•Comparisons with Dynamic Mechanical Analysis measurements.</description><identifier>ISSN: 0022-460X</identifier><identifier>EISSN: 1095-8568</identifier><identifier>DOI: 10.1016/j.jsv.2018.04.013</identifier><language>eng</language><publisher>Amsterdam: Elsevier Ltd</publisher><subject>Accuracy ; Aeronautics ; Apparent bending stiffness and apparent loss factor ; Automobile industry ; Automotive engineering ; Bending ; Bending stresses ; Broadband ; Composite structures ; Damping ; Design optimization ; Determination of viscoelastic material properties ; DMA/vibratory comparisons ; Equivalence ; Equivalent plate model ; Frequency ranges ; Hybrid sandwich panels ; Inverse method ; Mathematical models ; Mechanical analysis ; Mechanics ; Modal analysis ; Modelling ; Modulus of elasticity ; Multilayers ; Physics ; Polymers ; Prediction/measurement comparisons ; Steel plates ; Stiffness ; Velocity distribution ; Vibration analysis ; Vibration meters ; Vibrations ; Wave propagation</subject><ispartof>Journal of sound and vibration, 2018-07, Vol.426, p.129-149</ispartof><rights>2018 Elsevier Ltd</rights><rights>Copyright Elsevier Science Ltd. Jul 21, 2018</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c402t-90a15031afa01653614c70621eca2c8b6ff69de23ccae1c32fd7cfff75b84bd53</citedby><cites>FETCH-LOGICAL-c402t-90a15031afa01653614c70621eca2c8b6ff69de23ccae1c32fd7cfff75b84bd53</cites><orcidid>0000-0001-7066-891X ; 0000-0001-6448-6183 ; 0000-0002-5657-3495</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jsv.2018.04.013$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3536,27903,27904,45974</link.rule.ids><backlink>$$Uhttps://hal.science/hal-01778160$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Ege, Kerem</creatorcontrib><creatorcontrib>Roozen, N.B.</creatorcontrib><creatorcontrib>Leclère, Quentin</creatorcontrib><creatorcontrib>Rinaldi, Renaud G.</creatorcontrib><title>Assessment of the apparent bending stiffness and damping of multilayer plates; modelling and experiment</title><title>Journal of sound and vibration</title><description>In the context of aeronautics, automotive and construction applications, the design of light multilayer plates with optimized vibroacoustical damping and isolation performances remains a major industrial challenge and a hot topic of research. This paper focuses on the vibrational behavior of three-layered sandwich composite plates in a broad-band frequency range. Several aspects are studied through measurement techniques and analytical modelling of a steel/polymer/steel plate sandwich system. A contactless measurement of the velocity field of plates using a scanning laser vibrometer is performed, from which the equivalent single layer complex rigidity (apparent bending stiffness and apparent damping) in the mid/high frequency ranges is estimated. The results are combined with low/mid frequency estimations obtained with a high-resolution modal analysis method so that the frequency dependent equivalent Young's modulus and equivalent loss factor of the composite plate are identified for the whole [40 Hz-20 kHz] frequency band. The results are in very good agreement with an equivalent single layer analytical modelling based on wave propagation analysis (model of Guyader). The comparison with this model allows identifying the frequency dependent complex modulus of the polymer core layer through inverse resolution. Dynamical mechanical analysis measurements are also performed on the polymer layer alone and compared with the values obtained through the inverse method. Again, a good agreement between these two estimations over the broad-band frequency range demonstrates the validity of the approach.
•Determination of material properties of sandwich plates from experimental vibrational fields.•Frequency dependent apparent stiffness and apparent damping of three-layered sandwich plates.•Comparisons of measured/predicted frequency dependent equivalent complex modulus.•Inverse vibrational method to identify polymer characteristics up to 20 kHz.•Comparisons with Dynamic Mechanical Analysis measurements.</description><subject>Accuracy</subject><subject>Aeronautics</subject><subject>Apparent bending stiffness and apparent loss factor</subject><subject>Automobile industry</subject><subject>Automotive engineering</subject><subject>Bending</subject><subject>Bending stresses</subject><subject>Broadband</subject><subject>Composite structures</subject><subject>Damping</subject><subject>Design optimization</subject><subject>Determination of viscoelastic material properties</subject><subject>DMA/vibratory comparisons</subject><subject>Equivalence</subject><subject>Equivalent plate model</subject><subject>Frequency ranges</subject><subject>Hybrid sandwich panels</subject><subject>Inverse method</subject><subject>Mathematical models</subject><subject>Mechanical analysis</subject><subject>Mechanics</subject><subject>Modal analysis</subject><subject>Modelling</subject><subject>Modulus of elasticity</subject><subject>Multilayers</subject><subject>Physics</subject><subject>Polymers</subject><subject>Prediction/measurement comparisons</subject><subject>Steel plates</subject><subject>Stiffness</subject><subject>Velocity distribution</subject><subject>Vibration analysis</subject><subject>Vibration meters</subject><subject>Vibrations</subject><subject>Wave propagation</subject><issn>0022-460X</issn><issn>1095-8568</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kD9PwzAQxS0EEqXwAdgiMTEknJ3EcdWpqvgnVWIBic1y7XPrKE2CnVb02-OoiJHJ8t3vvbt7hNxSyChQ_lBndThkDKjIoMiA5mdkQmFWpqLk4pxMABhLCw6fl-QqhBoAZkVeTMhmEQKGsMN2SDqbDFtMVN8rP_7X2BrXbpIwOGvbSCWqNYlRu36sRnq3bwbXqCP6pG_UgGGe7DqDTTP2Rxa_e_RuNL8mF1Y1AW9-3yn5eHp8X76kq7fn1-VileoC2JDOQNEScqqsileVOaeFroAziloxLdbcWj4zyHKtFVKdM2sqba2tyrUo1qbMp-T-5LtVjezjbOWPslNOvixWcqwBrSpBORxoZO9ObO-7rz2GQdbd3rdxPclAcMEEi7tMCT1R2ncheLR_thTkmL2sZcxejtlLKOKAPGrmJw3GUw8OvQzaYavROI96kKZz_6h_AF7DjZc</recordid><startdate>20180721</startdate><enddate>20180721</enddate><creator>Ege, Kerem</creator><creator>Roozen, N.B.</creator><creator>Leclère, Quentin</creator><creator>Rinaldi, Renaud G.</creator><general>Elsevier Ltd</general><general>Elsevier Science Ltd</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0001-7066-891X</orcidid><orcidid>https://orcid.org/0000-0001-6448-6183</orcidid><orcidid>https://orcid.org/0000-0002-5657-3495</orcidid></search><sort><creationdate>20180721</creationdate><title>Assessment of the apparent bending stiffness and damping of multilayer plates; modelling and experiment</title><author>Ege, Kerem ; Roozen, N.B. ; Leclère, Quentin ; Rinaldi, Renaud G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c402t-90a15031afa01653614c70621eca2c8b6ff69de23ccae1c32fd7cfff75b84bd53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Accuracy</topic><topic>Aeronautics</topic><topic>Apparent bending stiffness and apparent loss factor</topic><topic>Automobile industry</topic><topic>Automotive engineering</topic><topic>Bending</topic><topic>Bending stresses</topic><topic>Broadband</topic><topic>Composite structures</topic><topic>Damping</topic><topic>Design optimization</topic><topic>Determination of viscoelastic material properties</topic><topic>DMA/vibratory comparisons</topic><topic>Equivalence</topic><topic>Equivalent plate model</topic><topic>Frequency ranges</topic><topic>Hybrid sandwich panels</topic><topic>Inverse method</topic><topic>Mathematical models</topic><topic>Mechanical analysis</topic><topic>Mechanics</topic><topic>Modal analysis</topic><topic>Modelling</topic><topic>Modulus of elasticity</topic><topic>Multilayers</topic><topic>Physics</topic><topic>Polymers</topic><topic>Prediction/measurement comparisons</topic><topic>Steel plates</topic><topic>Stiffness</topic><topic>Velocity distribution</topic><topic>Vibration analysis</topic><topic>Vibration meters</topic><topic>Vibrations</topic><topic>Wave propagation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ege, Kerem</creatorcontrib><creatorcontrib>Roozen, N.B.</creatorcontrib><creatorcontrib>Leclère, Quentin</creatorcontrib><creatorcontrib>Rinaldi, Renaud G.</creatorcontrib><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Journal of sound and vibration</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ege, Kerem</au><au>Roozen, N.B.</au><au>Leclère, Quentin</au><au>Rinaldi, Renaud G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Assessment of the apparent bending stiffness and damping of multilayer plates; modelling and experiment</atitle><jtitle>Journal of sound and vibration</jtitle><date>2018-07-21</date><risdate>2018</risdate><volume>426</volume><spage>129</spage><epage>149</epage><pages>129-149</pages><issn>0022-460X</issn><eissn>1095-8568</eissn><abstract>In the context of aeronautics, automotive and construction applications, the design of light multilayer plates with optimized vibroacoustical damping and isolation performances remains a major industrial challenge and a hot topic of research. This paper focuses on the vibrational behavior of three-layered sandwich composite plates in a broad-band frequency range. Several aspects are studied through measurement techniques and analytical modelling of a steel/polymer/steel plate sandwich system. A contactless measurement of the velocity field of plates using a scanning laser vibrometer is performed, from which the equivalent single layer complex rigidity (apparent bending stiffness and apparent damping) in the mid/high frequency ranges is estimated. The results are combined with low/mid frequency estimations obtained with a high-resolution modal analysis method so that the frequency dependent equivalent Young's modulus and equivalent loss factor of the composite plate are identified for the whole [40 Hz-20 kHz] frequency band. The results are in very good agreement with an equivalent single layer analytical modelling based on wave propagation analysis (model of Guyader). The comparison with this model allows identifying the frequency dependent complex modulus of the polymer core layer through inverse resolution. Dynamical mechanical analysis measurements are also performed on the polymer layer alone and compared with the values obtained through the inverse method. Again, a good agreement between these two estimations over the broad-band frequency range demonstrates the validity of the approach.
•Determination of material properties of sandwich plates from experimental vibrational fields.•Frequency dependent apparent stiffness and apparent damping of three-layered sandwich plates.•Comparisons of measured/predicted frequency dependent equivalent complex modulus.•Inverse vibrational method to identify polymer characteristics up to 20 kHz.•Comparisons with Dynamic Mechanical Analysis measurements.</abstract><cop>Amsterdam</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.jsv.2018.04.013</doi><tpages>21</tpages><orcidid>https://orcid.org/0000-0001-7066-891X</orcidid><orcidid>https://orcid.org/0000-0001-6448-6183</orcidid><orcidid>https://orcid.org/0000-0002-5657-3495</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-460X |
ispartof | Journal of sound and vibration, 2018-07, Vol.426, p.129-149 |
issn | 0022-460X 1095-8568 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_01778160v1 |
source | Elsevier ScienceDirect Journals |
subjects | Accuracy Aeronautics Apparent bending stiffness and apparent loss factor Automobile industry Automotive engineering Bending Bending stresses Broadband Composite structures Damping Design optimization Determination of viscoelastic material properties DMA/vibratory comparisons Equivalence Equivalent plate model Frequency ranges Hybrid sandwich panels Inverse method Mathematical models Mechanical analysis Mechanics Modal analysis Modelling Modulus of elasticity Multilayers Physics Polymers Prediction/measurement comparisons Steel plates Stiffness Velocity distribution Vibration analysis Vibration meters Vibrations Wave propagation |
title | Assessment of the apparent bending stiffness and damping of multilayer plates; modelling and experiment |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T03%3A50%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Assessment%20of%20the%20apparent%20bending%20stiffness%20and%20damping%20of%20multilayer%20plates;%20modelling%20and%20experiment&rft.jtitle=Journal%20of%20sound%20and%20vibration&rft.au=Ege,%20Kerem&rft.date=2018-07-21&rft.volume=426&rft.spage=129&rft.epage=149&rft.pages=129-149&rft.issn=0022-460X&rft.eissn=1095-8568&rft_id=info:doi/10.1016/j.jsv.2018.04.013&rft_dat=%3Cproquest_hal_p%3E2086828250%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2086828250&rft_id=info:pmid/&rft_els_id=S0022460X18302384&rfr_iscdi=true |