Equivalent Inclusion Approach for Micromechanics Estimates of Nanocomposite Elastic Properties

AbstractClassical micromechanics approaches for heterogeneous media assume perfect bonding between phases, implying that both displacement and stress vectors are continuous across the interface between the phases. When nanoinclusions are involved, a stress vector discontinuity in the local equilibri...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of nanomechanics and micromechanics 2016-06, Vol.6 (2)
Hauptverfasser: Dormieux, L, Lemarchand, E, Brisard, S
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 2
container_start_page
container_title Journal of nanomechanics and micromechanics
container_volume 6
creator Dormieux, L
Lemarchand, E
Brisard, S
description AbstractClassical micromechanics approaches for heterogeneous media assume perfect bonding between phases, implying that both displacement and stress vectors are continuous across the interface between the phases. When nanoinclusions are involved, a stress vector discontinuity in the local equilibrium has to be accounted for. In this framework, this paper derives an approximate solution of the Lippmann-Schwinger (L-S) equation, which accounts for these surface stresses. This approach suggests introducing the concept of an equivalent particle that combines the particle with the surrounding interface, which can be directly implemented in any standard homogenization procedure, such as the Mori-Tanaka scheme. Analytical expressions for the stiffness tensor of the equivalent particle is derived for spheroidal inclusions, accounting for a wide range of nanoinclusion shapes and dimensions. Finally, an energy-based analysis proves how the dramatic increase of the elastic properties is controlled, for a given volume fraction, by the smallest size of the nanoinclusions.
doi_str_mv 10.1061/(ASCE)NM.2153-5477.0000104
format Article
fullrecord <record><control><sourceid>hal_cross</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01773750v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_HAL_hal_01773750v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-a343t-5e1fd7317c8a15b8a0d076b4684191b8c2e84341008d5c886aab59a9d791dae53</originalsourceid><addsrcrecordid>eNp1kEFLwzAUx4MoOHTfIXhyh81kbZrUWxnVDbYpqFfDa5qyjK6pSTfw25uy0Zu5JLz8f4_3fgg9UDKjJKFPj9nHIp9sN7M5ZdGUxZzPSDiUxFdoNNSuh3cU36Kx9_s-xGJBUzFC3_nP0Zyg1k2HV42qj97YBmdt6yyoHa6swxujnD1otYPGKI9z35kDdNpjW-EtNFbZQ2u96TTOawifCr8722rXGe3v0U0Ftdfjy32Hvl7yz8Vyun57XS2y9RSiOOqmTNOq5BHlSgBlhQBSEp4UcSJimtJCqLkWYXxKiCiZEiIBKFgKaclTWoJm0R2anPvuoJatCwO6X2nByGW2ln2NUM4jzsiJhuzzORvW8t7pagAokb1YKXuxcruRvTjZS5QXsQFOzjB4peXeHl0T9hrI_8E_PTl9Bw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Equivalent Inclusion Approach for Micromechanics Estimates of Nanocomposite Elastic Properties</title><source>American Society of Civil Engineers:NESLI2:Journals:2014</source><creator>Dormieux, L ; Lemarchand, E ; Brisard, S</creator><creatorcontrib>Dormieux, L ; Lemarchand, E ; Brisard, S</creatorcontrib><description>AbstractClassical micromechanics approaches for heterogeneous media assume perfect bonding between phases, implying that both displacement and stress vectors are continuous across the interface between the phases. When nanoinclusions are involved, a stress vector discontinuity in the local equilibrium has to be accounted for. In this framework, this paper derives an approximate solution of the Lippmann-Schwinger (L-S) equation, which accounts for these surface stresses. This approach suggests introducing the concept of an equivalent particle that combines the particle with the surrounding interface, which can be directly implemented in any standard homogenization procedure, such as the Mori-Tanaka scheme. Analytical expressions for the stiffness tensor of the equivalent particle is derived for spheroidal inclusions, accounting for a wide range of nanoinclusion shapes and dimensions. Finally, an energy-based analysis proves how the dramatic increase of the elastic properties is controlled, for a given volume fraction, by the smallest size of the nanoinclusions.</description><identifier>ISSN: 2153-5434</identifier><identifier>EISSN: 2153-5477</identifier><identifier>DOI: 10.1061/(ASCE)NM.2153-5477.0000104</identifier><language>eng</language><publisher>American Society of Civil Engineers</publisher><subject>Engineering Sciences ; Mechanics ; Mechanics of materials ; Technical Papers</subject><ispartof>Journal of nanomechanics and micromechanics, 2016-06, Vol.6 (2)</ispartof><rights>2016 American Society of Civil Engineers</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a343t-5e1fd7317c8a15b8a0d076b4684191b8c2e84341008d5c886aab59a9d791dae53</citedby><cites>FETCH-LOGICAL-a343t-5e1fd7317c8a15b8a0d076b4684191b8c2e84341008d5c886aab59a9d791dae53</cites><orcidid>0000-0003-1788-9857 ; 0000-0002-1976-6263</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttp://ascelibrary.org/doi/pdf/10.1061/(ASCE)NM.2153-5477.0000104$$EPDF$$P50$$Gasce$$H</linktopdf><linktohtml>$$Uhttp://ascelibrary.org/doi/abs/10.1061/(ASCE)NM.2153-5477.0000104$$EHTML$$P50$$Gasce$$H</linktohtml><link.rule.ids>230,314,776,780,881,27903,27904,75940,75948</link.rule.ids><backlink>$$Uhttps://enpc.hal.science/hal-01773750$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Dormieux, L</creatorcontrib><creatorcontrib>Lemarchand, E</creatorcontrib><creatorcontrib>Brisard, S</creatorcontrib><title>Equivalent Inclusion Approach for Micromechanics Estimates of Nanocomposite Elastic Properties</title><title>Journal of nanomechanics and micromechanics</title><description>AbstractClassical micromechanics approaches for heterogeneous media assume perfect bonding between phases, implying that both displacement and stress vectors are continuous across the interface between the phases. When nanoinclusions are involved, a stress vector discontinuity in the local equilibrium has to be accounted for. In this framework, this paper derives an approximate solution of the Lippmann-Schwinger (L-S) equation, which accounts for these surface stresses. This approach suggests introducing the concept of an equivalent particle that combines the particle with the surrounding interface, which can be directly implemented in any standard homogenization procedure, such as the Mori-Tanaka scheme. Analytical expressions for the stiffness tensor of the equivalent particle is derived for spheroidal inclusions, accounting for a wide range of nanoinclusion shapes and dimensions. Finally, an energy-based analysis proves how the dramatic increase of the elastic properties is controlled, for a given volume fraction, by the smallest size of the nanoinclusions.</description><subject>Engineering Sciences</subject><subject>Mechanics</subject><subject>Mechanics of materials</subject><subject>Technical Papers</subject><issn>2153-5434</issn><issn>2153-5477</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp1kEFLwzAUx4MoOHTfIXhyh81kbZrUWxnVDbYpqFfDa5qyjK6pSTfw25uy0Zu5JLz8f4_3fgg9UDKjJKFPj9nHIp9sN7M5ZdGUxZzPSDiUxFdoNNSuh3cU36Kx9_s-xGJBUzFC3_nP0Zyg1k2HV42qj97YBmdt6yyoHa6swxujnD1otYPGKI9z35kDdNpjW-EtNFbZQ2u96TTOawifCr8722rXGe3v0U0Ftdfjy32Hvl7yz8Vyun57XS2y9RSiOOqmTNOq5BHlSgBlhQBSEp4UcSJimtJCqLkWYXxKiCiZEiIBKFgKaclTWoJm0R2anPvuoJatCwO6X2nByGW2ln2NUM4jzsiJhuzzORvW8t7pagAokb1YKXuxcruRvTjZS5QXsQFOzjB4peXeHl0T9hrI_8E_PTl9Bw</recordid><startdate>20160601</startdate><enddate>20160601</enddate><creator>Dormieux, L</creator><creator>Lemarchand, E</creator><creator>Brisard, S</creator><general>American Society of Civil Engineers</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0003-1788-9857</orcidid><orcidid>https://orcid.org/0000-0002-1976-6263</orcidid></search><sort><creationdate>20160601</creationdate><title>Equivalent Inclusion Approach for Micromechanics Estimates of Nanocomposite Elastic Properties</title><author>Dormieux, L ; Lemarchand, E ; Brisard, S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a343t-5e1fd7317c8a15b8a0d076b4684191b8c2e84341008d5c886aab59a9d791dae53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Engineering Sciences</topic><topic>Mechanics</topic><topic>Mechanics of materials</topic><topic>Technical Papers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dormieux, L</creatorcontrib><creatorcontrib>Lemarchand, E</creatorcontrib><creatorcontrib>Brisard, S</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Journal of nanomechanics and micromechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dormieux, L</au><au>Lemarchand, E</au><au>Brisard, S</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Equivalent Inclusion Approach for Micromechanics Estimates of Nanocomposite Elastic Properties</atitle><jtitle>Journal of nanomechanics and micromechanics</jtitle><date>2016-06-01</date><risdate>2016</risdate><volume>6</volume><issue>2</issue><issn>2153-5434</issn><eissn>2153-5477</eissn><abstract>AbstractClassical micromechanics approaches for heterogeneous media assume perfect bonding between phases, implying that both displacement and stress vectors are continuous across the interface between the phases. When nanoinclusions are involved, a stress vector discontinuity in the local equilibrium has to be accounted for. In this framework, this paper derives an approximate solution of the Lippmann-Schwinger (L-S) equation, which accounts for these surface stresses. This approach suggests introducing the concept of an equivalent particle that combines the particle with the surrounding interface, which can be directly implemented in any standard homogenization procedure, such as the Mori-Tanaka scheme. Analytical expressions for the stiffness tensor of the equivalent particle is derived for spheroidal inclusions, accounting for a wide range of nanoinclusion shapes and dimensions. Finally, an energy-based analysis proves how the dramatic increase of the elastic properties is controlled, for a given volume fraction, by the smallest size of the nanoinclusions.</abstract><pub>American Society of Civil Engineers</pub><doi>10.1061/(ASCE)NM.2153-5477.0000104</doi><orcidid>https://orcid.org/0000-0003-1788-9857</orcidid><orcidid>https://orcid.org/0000-0002-1976-6263</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2153-5434
ispartof Journal of nanomechanics and micromechanics, 2016-06, Vol.6 (2)
issn 2153-5434
2153-5477
language eng
recordid cdi_hal_primary_oai_HAL_hal_01773750v1
source American Society of Civil Engineers:NESLI2:Journals:2014
subjects Engineering Sciences
Mechanics
Mechanics of materials
Technical Papers
title Equivalent Inclusion Approach for Micromechanics Estimates of Nanocomposite Elastic Properties
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T13%3A19%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Equivalent%20Inclusion%20Approach%20for%20Micromechanics%20Estimates%20of%20Nanocomposite%20Elastic%20Properties&rft.jtitle=Journal%20of%20nanomechanics%20and%20micromechanics&rft.au=Dormieux,%20L&rft.date=2016-06-01&rft.volume=6&rft.issue=2&rft.issn=2153-5434&rft.eissn=2153-5477&rft_id=info:doi/10.1061/(ASCE)NM.2153-5477.0000104&rft_dat=%3Chal_cross%3Eoai_HAL_hal_01773750v1%3C/hal_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true