Crystallographic Trapping of Reaction Intermediates in Quinolinic Acid Synthesis by NadA
NadA is a multifunctional enzyme that condenses dihydroxyacetone phosphate (DHAP) with iminoaspartate (IA) to generate quinolinic acid (QA), the universal precursor of the nicotinamide adenine dinucleotide (NAD(P)) cofactor. Using X-ray crystallography, we have (i) characterized two of the reaction...
Gespeichert in:
Veröffentlicht in: | ACS chemical biology 2018-05, Vol.13 (5), p.1209-1217 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1217 |
---|---|
container_issue | 5 |
container_start_page | 1209 |
container_title | ACS chemical biology |
container_volume | 13 |
creator | Volbeda, Anne Saez Cabodevilla, Jaione Darnault, Claudine Gigarel, Océane Han, Thi-Hong-Lien Renoux, Oriane Hamelin, Olivier Ollagnier-de-Choudens, Sandrine Amara, Patricia Fontecilla-Camps, Juan C |
description | NadA is a multifunctional enzyme that condenses dihydroxyacetone phosphate (DHAP) with iminoaspartate (IA) to generate quinolinic acid (QA), the universal precursor of the nicotinamide adenine dinucleotide (NAD(P)) cofactor. Using X-ray crystallography, we have (i) characterized two of the reaction intermediates of QA synthesis using a “pH-shift” approach and a slowly reacting Thermotoga maritima NadA variant and (ii) observed the QA product, resulting from the degradation of an intermediate analogue, bound close to the entrance of a long tunnel leading to the solvent medium. We have also used molecular docking to propose a condensation mechanism between DHAP and IA based on two previously published Pyrococcus horikoshi NadA structures. The combination of reported data and our new results provide a structure-based complete catalytic sequence of QA synthesis by NadA. |
doi_str_mv | 10.1021/acschembio.7b01104 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01771643v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2024471750</sourcerecordid><originalsourceid>FETCH-LOGICAL-a442t-a7f1bc485ac4d0b913ee0c0a90acd8a6fbe86c3a9db822556aafec2635cf8d2b3</originalsourceid><addsrcrecordid>eNp9kE1PAjEURRujEUX_gAvTpS7AttP5WhKiQkI0KibumtdOB2qGFtsZE_69JSDuXN2Xl3Pv4iB0RcmQEkbvQAW11Ctp3DCXhFLCj9AZTVM-KMokPz7crOyh8xA-CeFJVpSnqMfKjFOaFWfoY-w3oYWmcQsP66VReB5zbewCuxq_alCtcRZPbav9SlcGWh2wsfilM9Y1xsbCSJkKv21su9TBBCw3-Amq0QU6qaEJ-nKfffT-cD8fTwaz58fpeDQbAOesHUBeU6l4kYLiFZElTbQmikBJQFUFZLXURaYSKCtZMJamGUCtFcuSVNVFxWTSR7e73SU0Yu3NCvxGODBiMpqJ7Y_QPKcZT75pZG927Nq7r06HVqxMULppwGrXBcEI4zyneUoiynao8i4Er-vDNiVia1_82Rd7-7F0vd_vZJR1qPzqjsBwB8Sy-HSdt1HNf4s_tEmTeQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2024471750</pqid></control><display><type>article</type><title>Crystallographic Trapping of Reaction Intermediates in Quinolinic Acid Synthesis by NadA</title><source>ACS_美国化学学会期刊(与NSTL共建)</source><creator>Volbeda, Anne ; Saez Cabodevilla, Jaione ; Darnault, Claudine ; Gigarel, Océane ; Han, Thi-Hong-Lien ; Renoux, Oriane ; Hamelin, Olivier ; Ollagnier-de-Choudens, Sandrine ; Amara, Patricia ; Fontecilla-Camps, Juan C</creator><creatorcontrib>Volbeda, Anne ; Saez Cabodevilla, Jaione ; Darnault, Claudine ; Gigarel, Océane ; Han, Thi-Hong-Lien ; Renoux, Oriane ; Hamelin, Olivier ; Ollagnier-de-Choudens, Sandrine ; Amara, Patricia ; Fontecilla-Camps, Juan C</creatorcontrib><description>NadA is a multifunctional enzyme that condenses dihydroxyacetone phosphate (DHAP) with iminoaspartate (IA) to generate quinolinic acid (QA), the universal precursor of the nicotinamide adenine dinucleotide (NAD(P)) cofactor. Using X-ray crystallography, we have (i) characterized two of the reaction intermediates of QA synthesis using a “pH-shift” approach and a slowly reacting Thermotoga maritima NadA variant and (ii) observed the QA product, resulting from the degradation of an intermediate analogue, bound close to the entrance of a long tunnel leading to the solvent medium. We have also used molecular docking to propose a condensation mechanism between DHAP and IA based on two previously published Pyrococcus horikoshi NadA structures. The combination of reported data and our new results provide a structure-based complete catalytic sequence of QA synthesis by NadA.</description><identifier>ISSN: 1554-8929</identifier><identifier>EISSN: 1554-8937</identifier><identifier>DOI: 10.1021/acschembio.7b01104</identifier><identifier>PMID: 29641168</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Biochemistry, Molecular Biology ; Life Sciences</subject><ispartof>ACS chemical biology, 2018-05, Vol.13 (5), p.1209-1217</ispartof><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a442t-a7f1bc485ac4d0b913ee0c0a90acd8a6fbe86c3a9db822556aafec2635cf8d2b3</citedby><cites>FETCH-LOGICAL-a442t-a7f1bc485ac4d0b913ee0c0a90acd8a6fbe86c3a9db822556aafec2635cf8d2b3</cites><orcidid>0000-0002-3901-1378 ; 0000-0001-9634-7305</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acschembio.7b01104$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acschembio.7b01104$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,776,780,881,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29641168$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-01771643$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Volbeda, Anne</creatorcontrib><creatorcontrib>Saez Cabodevilla, Jaione</creatorcontrib><creatorcontrib>Darnault, Claudine</creatorcontrib><creatorcontrib>Gigarel, Océane</creatorcontrib><creatorcontrib>Han, Thi-Hong-Lien</creatorcontrib><creatorcontrib>Renoux, Oriane</creatorcontrib><creatorcontrib>Hamelin, Olivier</creatorcontrib><creatorcontrib>Ollagnier-de-Choudens, Sandrine</creatorcontrib><creatorcontrib>Amara, Patricia</creatorcontrib><creatorcontrib>Fontecilla-Camps, Juan C</creatorcontrib><title>Crystallographic Trapping of Reaction Intermediates in Quinolinic Acid Synthesis by NadA</title><title>ACS chemical biology</title><addtitle>ACS Chem. Biol</addtitle><description>NadA is a multifunctional enzyme that condenses dihydroxyacetone phosphate (DHAP) with iminoaspartate (IA) to generate quinolinic acid (QA), the universal precursor of the nicotinamide adenine dinucleotide (NAD(P)) cofactor. Using X-ray crystallography, we have (i) characterized two of the reaction intermediates of QA synthesis using a “pH-shift” approach and a slowly reacting Thermotoga maritima NadA variant and (ii) observed the QA product, resulting from the degradation of an intermediate analogue, bound close to the entrance of a long tunnel leading to the solvent medium. We have also used molecular docking to propose a condensation mechanism between DHAP and IA based on two previously published Pyrococcus horikoshi NadA structures. The combination of reported data and our new results provide a structure-based complete catalytic sequence of QA synthesis by NadA.</description><subject>Biochemistry, Molecular Biology</subject><subject>Life Sciences</subject><issn>1554-8929</issn><issn>1554-8937</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kE1PAjEURRujEUX_gAvTpS7AttP5WhKiQkI0KibumtdOB2qGFtsZE_69JSDuXN2Xl3Pv4iB0RcmQEkbvQAW11Ctp3DCXhFLCj9AZTVM-KMokPz7crOyh8xA-CeFJVpSnqMfKjFOaFWfoY-w3oYWmcQsP66VReB5zbewCuxq_alCtcRZPbav9SlcGWh2wsfilM9Y1xsbCSJkKv21su9TBBCw3-Amq0QU6qaEJ-nKfffT-cD8fTwaz58fpeDQbAOesHUBeU6l4kYLiFZElTbQmikBJQFUFZLXURaYSKCtZMJamGUCtFcuSVNVFxWTSR7e73SU0Yu3NCvxGODBiMpqJ7Y_QPKcZT75pZG927Nq7r06HVqxMULppwGrXBcEI4zyneUoiynao8i4Er-vDNiVia1_82Rd7-7F0vd_vZJR1qPzqjsBwB8Sy-HSdt1HNf4s_tEmTeQ</recordid><startdate>20180518</startdate><enddate>20180518</enddate><creator>Volbeda, Anne</creator><creator>Saez Cabodevilla, Jaione</creator><creator>Darnault, Claudine</creator><creator>Gigarel, Océane</creator><creator>Han, Thi-Hong-Lien</creator><creator>Renoux, Oriane</creator><creator>Hamelin, Olivier</creator><creator>Ollagnier-de-Choudens, Sandrine</creator><creator>Amara, Patricia</creator><creator>Fontecilla-Camps, Juan C</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-3901-1378</orcidid><orcidid>https://orcid.org/0000-0001-9634-7305</orcidid></search><sort><creationdate>20180518</creationdate><title>Crystallographic Trapping of Reaction Intermediates in Quinolinic Acid Synthesis by NadA</title><author>Volbeda, Anne ; Saez Cabodevilla, Jaione ; Darnault, Claudine ; Gigarel, Océane ; Han, Thi-Hong-Lien ; Renoux, Oriane ; Hamelin, Olivier ; Ollagnier-de-Choudens, Sandrine ; Amara, Patricia ; Fontecilla-Camps, Juan C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a442t-a7f1bc485ac4d0b913ee0c0a90acd8a6fbe86c3a9db822556aafec2635cf8d2b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Biochemistry, Molecular Biology</topic><topic>Life Sciences</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Volbeda, Anne</creatorcontrib><creatorcontrib>Saez Cabodevilla, Jaione</creatorcontrib><creatorcontrib>Darnault, Claudine</creatorcontrib><creatorcontrib>Gigarel, Océane</creatorcontrib><creatorcontrib>Han, Thi-Hong-Lien</creatorcontrib><creatorcontrib>Renoux, Oriane</creatorcontrib><creatorcontrib>Hamelin, Olivier</creatorcontrib><creatorcontrib>Ollagnier-de-Choudens, Sandrine</creatorcontrib><creatorcontrib>Amara, Patricia</creatorcontrib><creatorcontrib>Fontecilla-Camps, Juan C</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>ACS chemical biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Volbeda, Anne</au><au>Saez Cabodevilla, Jaione</au><au>Darnault, Claudine</au><au>Gigarel, Océane</au><au>Han, Thi-Hong-Lien</au><au>Renoux, Oriane</au><au>Hamelin, Olivier</au><au>Ollagnier-de-Choudens, Sandrine</au><au>Amara, Patricia</au><au>Fontecilla-Camps, Juan C</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Crystallographic Trapping of Reaction Intermediates in Quinolinic Acid Synthesis by NadA</atitle><jtitle>ACS chemical biology</jtitle><addtitle>ACS Chem. Biol</addtitle><date>2018-05-18</date><risdate>2018</risdate><volume>13</volume><issue>5</issue><spage>1209</spage><epage>1217</epage><pages>1209-1217</pages><issn>1554-8929</issn><eissn>1554-8937</eissn><abstract>NadA is a multifunctional enzyme that condenses dihydroxyacetone phosphate (DHAP) with iminoaspartate (IA) to generate quinolinic acid (QA), the universal precursor of the nicotinamide adenine dinucleotide (NAD(P)) cofactor. Using X-ray crystallography, we have (i) characterized two of the reaction intermediates of QA synthesis using a “pH-shift” approach and a slowly reacting Thermotoga maritima NadA variant and (ii) observed the QA product, resulting from the degradation of an intermediate analogue, bound close to the entrance of a long tunnel leading to the solvent medium. We have also used molecular docking to propose a condensation mechanism between DHAP and IA based on two previously published Pyrococcus horikoshi NadA structures. The combination of reported data and our new results provide a structure-based complete catalytic sequence of QA synthesis by NadA.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>29641168</pmid><doi>10.1021/acschembio.7b01104</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-3901-1378</orcidid><orcidid>https://orcid.org/0000-0001-9634-7305</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1554-8929 |
ispartof | ACS chemical biology, 2018-05, Vol.13 (5), p.1209-1217 |
issn | 1554-8929 1554-8937 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_01771643v1 |
source | ACS_美国化学学会期刊(与NSTL共建) |
subjects | Biochemistry, Molecular Biology Life Sciences |
title | Crystallographic Trapping of Reaction Intermediates in Quinolinic Acid Synthesis by NadA |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T15%3A45%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Crystallographic%20Trapping%20of%20Reaction%20Intermediates%20in%20Quinolinic%20Acid%20Synthesis%20by%20NadA&rft.jtitle=ACS%20chemical%20biology&rft.au=Volbeda,%20Anne&rft.date=2018-05-18&rft.volume=13&rft.issue=5&rft.spage=1209&rft.epage=1217&rft.pages=1209-1217&rft.issn=1554-8929&rft.eissn=1554-8937&rft_id=info:doi/10.1021/acschembio.7b01104&rft_dat=%3Cproquest_hal_p%3E2024471750%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2024471750&rft_id=info:pmid/29641168&rfr_iscdi=true |