Hamiltonian unboundedness vs stability with an application to Horndeski theory

A Hamiltonian density bounded from below implies that the lowest-energy state is stable. We point out, contrary to common lore, that an unbounded Hamiltonian density does not necessarily imply an instability: Stability is indeed a coordinate-independent property, whereas the Hamiltonian density does...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. D 2018, Vol.98 (10), p.104050, Article 104050
Hauptverfasser: Babichev, E., Charmousis, C., Esposito-Farèse, G., Lehébel, A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 10
container_start_page 104050
container_title Physical review. D
container_volume 98
creator Babichev, E.
Charmousis, C.
Esposito-Farèse, G.
Lehébel, A.
description A Hamiltonian density bounded from below implies that the lowest-energy state is stable. We point out, contrary to common lore, that an unbounded Hamiltonian density does not necessarily imply an instability: Stability is indeed a coordinate-independent property, whereas the Hamiltonian density does depend on the choice of coordinates. We discuss in detail the relation between the two, starting from k-essence and extending our discussion to general field theories. We give the correct stability criterion, using the relative orientation of the causal cones for all propagating degrees of freedom. We then apply this criterion to an exact Schwarzschild-de Sitter solution of a beyond-Horndeski theory, while taking into account the recent experimental constraint regarding the speed of gravitational waves. We extract the spin-2 and spin-0 causal cones by analyzing respectively all the odd-parity and the ℓ=0 even-parity modes. Contrary to a claim in the literature, we prove that this solution does not exhibit any kinetic instability for a given range of parameters defining the theory.
doi_str_mv 10.1103/PhysRevD.98.104050
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01768013v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2150522453</sourcerecordid><originalsourceid>FETCH-LOGICAL-c358t-71b5fccaac1f650ad0c8f8cec9bd83b5d459dc0920c311c6a5bd3d6a364580ba3</originalsourceid><addsrcrecordid>eNo9kF1LwzAUhosoOOb-gFcBr7zYPGmaNr0c86PCUBG9DmmS0syuqUk66b-3o7qr83J4eHl5ougawwpjIHdv9eDf9eF-lbMVhgQonEWzOMlgCRDn56eM4TJaeL-DMaaQZxjPopdC7E0TbGtEi_q2tH2rtGq19-jgkQ-iNI0JA_oxoUYjIrquMVIEY1sULCqsG3n_ZVCotXXDVXRRicbrxd-dR5-PDx-bYrl9fXrerLdLSSgLywyXtJJSCImrlIJQIFnFpJZ5qRgpqUporiTkMUiCsUwFLRVRqSBpQhmUgsyj26m3Fg3vnNkLN3ArDC_WW378Ac5SBpgc8MjeTGzn7HevfeA727t2nMdjTIHGcULJSMUTJZ313unqVIuBHzXzf808Z3zSTH4BJw5ygQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2150522453</pqid></control><display><type>article</type><title>Hamiltonian unboundedness vs stability with an application to Horndeski theory</title><source>American Physical Society Journals</source><creator>Babichev, E. ; Charmousis, C. ; Esposito-Farèse, G. ; Lehébel, A.</creator><creatorcontrib>Babichev, E. ; Charmousis, C. ; Esposito-Farèse, G. ; Lehébel, A.</creatorcontrib><description>A Hamiltonian density bounded from below implies that the lowest-energy state is stable. We point out, contrary to common lore, that an unbounded Hamiltonian density does not necessarily imply an instability: Stability is indeed a coordinate-independent property, whereas the Hamiltonian density does depend on the choice of coordinates. We discuss in detail the relation between the two, starting from k-essence and extending our discussion to general field theories. We give the correct stability criterion, using the relative orientation of the causal cones for all propagating degrees of freedom. We then apply this criterion to an exact Schwarzschild-de Sitter solution of a beyond-Horndeski theory, while taking into account the recent experimental constraint regarding the speed of gravitational waves. We extract the spin-2 and spin-0 causal cones by analyzing respectively all the odd-parity and the ℓ=0 even-parity modes. Contrary to a claim in the literature, we prove that this solution does not exhibit any kinetic instability for a given range of parameters defining the theory.</description><identifier>ISSN: 2470-0010</identifier><identifier>EISSN: 2470-0029</identifier><identifier>DOI: 10.1103/PhysRevD.98.104050</identifier><language>eng</language><publisher>College Park: American Physical Society</publisher><subject>Cones ; Density ; General Relativity and Quantum Cosmology ; Gravitational waves ; High Energy Physics - Theory ; Parity ; Physics ; Stability ; Stability criteria</subject><ispartof>Physical review. D, 2018, Vol.98 (10), p.104050, Article 104050</ispartof><rights>Copyright American Physical Society Nov 15, 2018</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c358t-71b5fccaac1f650ad0c8f8cec9bd83b5d459dc0920c311c6a5bd3d6a364580ba3</citedby><cites>FETCH-LOGICAL-c358t-71b5fccaac1f650ad0c8f8cec9bd83b5d459dc0920c311c6a5bd3d6a364580ba3</cites><orcidid>0000-0003-4932-587X ; 0000-0002-3338-3365 ; 0000-0002-5364-4753</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,2862,2863,4009,27902,27903,27904</link.rule.ids><backlink>$$Uhttps://hal.science/hal-01768013$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Babichev, E.</creatorcontrib><creatorcontrib>Charmousis, C.</creatorcontrib><creatorcontrib>Esposito-Farèse, G.</creatorcontrib><creatorcontrib>Lehébel, A.</creatorcontrib><title>Hamiltonian unboundedness vs stability with an application to Horndeski theory</title><title>Physical review. D</title><description>A Hamiltonian density bounded from below implies that the lowest-energy state is stable. We point out, contrary to common lore, that an unbounded Hamiltonian density does not necessarily imply an instability: Stability is indeed a coordinate-independent property, whereas the Hamiltonian density does depend on the choice of coordinates. We discuss in detail the relation between the two, starting from k-essence and extending our discussion to general field theories. We give the correct stability criterion, using the relative orientation of the causal cones for all propagating degrees of freedom. We then apply this criterion to an exact Schwarzschild-de Sitter solution of a beyond-Horndeski theory, while taking into account the recent experimental constraint regarding the speed of gravitational waves. We extract the spin-2 and spin-0 causal cones by analyzing respectively all the odd-parity and the ℓ=0 even-parity modes. Contrary to a claim in the literature, we prove that this solution does not exhibit any kinetic instability for a given range of parameters defining the theory.</description><subject>Cones</subject><subject>Density</subject><subject>General Relativity and Quantum Cosmology</subject><subject>Gravitational waves</subject><subject>High Energy Physics - Theory</subject><subject>Parity</subject><subject>Physics</subject><subject>Stability</subject><subject>Stability criteria</subject><issn>2470-0010</issn><issn>2470-0029</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNo9kF1LwzAUhosoOOb-gFcBr7zYPGmaNr0c86PCUBG9DmmS0syuqUk66b-3o7qr83J4eHl5ougawwpjIHdv9eDf9eF-lbMVhgQonEWzOMlgCRDn56eM4TJaeL-DMaaQZxjPopdC7E0TbGtEi_q2tH2rtGq19-jgkQ-iNI0JA_oxoUYjIrquMVIEY1sULCqsG3n_ZVCotXXDVXRRicbrxd-dR5-PDx-bYrl9fXrerLdLSSgLywyXtJJSCImrlIJQIFnFpJZ5qRgpqUporiTkMUiCsUwFLRVRqSBpQhmUgsyj26m3Fg3vnNkLN3ArDC_WW378Ac5SBpgc8MjeTGzn7HevfeA727t2nMdjTIHGcULJSMUTJZ313unqVIuBHzXzf808Z3zSTH4BJw5ygQ</recordid><startdate>2018</startdate><enddate>2018</enddate><creator>Babichev, E.</creator><creator>Charmousis, C.</creator><creator>Esposito-Farèse, G.</creator><creator>Lehébel, A.</creator><general>American Physical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0003-4932-587X</orcidid><orcidid>https://orcid.org/0000-0002-3338-3365</orcidid><orcidid>https://orcid.org/0000-0002-5364-4753</orcidid></search><sort><creationdate>2018</creationdate><title>Hamiltonian unboundedness vs stability with an application to Horndeski theory</title><author>Babichev, E. ; Charmousis, C. ; Esposito-Farèse, G. ; Lehébel, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c358t-71b5fccaac1f650ad0c8f8cec9bd83b5d459dc0920c311c6a5bd3d6a364580ba3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Cones</topic><topic>Density</topic><topic>General Relativity and Quantum Cosmology</topic><topic>Gravitational waves</topic><topic>High Energy Physics - Theory</topic><topic>Parity</topic><topic>Physics</topic><topic>Stability</topic><topic>Stability criteria</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Babichev, E.</creatorcontrib><creatorcontrib>Charmousis, C.</creatorcontrib><creatorcontrib>Esposito-Farèse, G.</creatorcontrib><creatorcontrib>Lehébel, A.</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Physical review. D</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Babichev, E.</au><au>Charmousis, C.</au><au>Esposito-Farèse, G.</au><au>Lehébel, A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hamiltonian unboundedness vs stability with an application to Horndeski theory</atitle><jtitle>Physical review. D</jtitle><date>2018</date><risdate>2018</risdate><volume>98</volume><issue>10</issue><spage>104050</spage><pages>104050-</pages><artnum>104050</artnum><issn>2470-0010</issn><eissn>2470-0029</eissn><abstract>A Hamiltonian density bounded from below implies that the lowest-energy state is stable. We point out, contrary to common lore, that an unbounded Hamiltonian density does not necessarily imply an instability: Stability is indeed a coordinate-independent property, whereas the Hamiltonian density does depend on the choice of coordinates. We discuss in detail the relation between the two, starting from k-essence and extending our discussion to general field theories. We give the correct stability criterion, using the relative orientation of the causal cones for all propagating degrees of freedom. We then apply this criterion to an exact Schwarzschild-de Sitter solution of a beyond-Horndeski theory, while taking into account the recent experimental constraint regarding the speed of gravitational waves. We extract the spin-2 and spin-0 causal cones by analyzing respectively all the odd-parity and the ℓ=0 even-parity modes. Contrary to a claim in the literature, we prove that this solution does not exhibit any kinetic instability for a given range of parameters defining the theory.</abstract><cop>College Park</cop><pub>American Physical Society</pub><doi>10.1103/PhysRevD.98.104050</doi><orcidid>https://orcid.org/0000-0003-4932-587X</orcidid><orcidid>https://orcid.org/0000-0002-3338-3365</orcidid><orcidid>https://orcid.org/0000-0002-5364-4753</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2470-0010
ispartof Physical review. D, 2018, Vol.98 (10), p.104050, Article 104050
issn 2470-0010
2470-0029
language eng
recordid cdi_hal_primary_oai_HAL_hal_01768013v1
source American Physical Society Journals
subjects Cones
Density
General Relativity and Quantum Cosmology
Gravitational waves
High Energy Physics - Theory
Parity
Physics
Stability
Stability criteria
title Hamiltonian unboundedness vs stability with an application to Horndeski theory
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T06%3A28%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hamiltonian%20unboundedness%20vs%20stability%20with%20an%20application%20to%20Horndeski%20theory&rft.jtitle=Physical%20review.%20D&rft.au=Babichev,%20E.&rft.date=2018&rft.volume=98&rft.issue=10&rft.spage=104050&rft.pages=104050-&rft.artnum=104050&rft.issn=2470-0010&rft.eissn=2470-0029&rft_id=info:doi/10.1103/PhysRevD.98.104050&rft_dat=%3Cproquest_hal_p%3E2150522453%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2150522453&rft_id=info:pmid/&rfr_iscdi=true