Hamiltonian unboundedness vs stability with an application to Horndeski theory
A Hamiltonian density bounded from below implies that the lowest-energy state is stable. We point out, contrary to common lore, that an unbounded Hamiltonian density does not necessarily imply an instability: Stability is indeed a coordinate-independent property, whereas the Hamiltonian density does...
Gespeichert in:
Veröffentlicht in: | Physical review. D 2018, Vol.98 (10), p.104050, Article 104050 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 10 |
container_start_page | 104050 |
container_title | Physical review. D |
container_volume | 98 |
creator | Babichev, E. Charmousis, C. Esposito-Farèse, G. Lehébel, A. |
description | A Hamiltonian density bounded from below implies that the lowest-energy state is stable. We point out, contrary to common lore, that an unbounded Hamiltonian density does not necessarily imply an instability: Stability is indeed a coordinate-independent property, whereas the Hamiltonian density does depend on the choice of coordinates. We discuss in detail the relation between the two, starting from k-essence and extending our discussion to general field theories. We give the correct stability criterion, using the relative orientation of the causal cones for all propagating degrees of freedom. We then apply this criterion to an exact Schwarzschild-de Sitter solution of a beyond-Horndeski theory, while taking into account the recent experimental constraint regarding the speed of gravitational waves. We extract the spin-2 and spin-0 causal cones by analyzing respectively all the odd-parity and the ℓ=0 even-parity modes. Contrary to a claim in the literature, we prove that this solution does not exhibit any kinetic instability for a given range of parameters defining the theory. |
doi_str_mv | 10.1103/PhysRevD.98.104050 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01768013v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2150522453</sourcerecordid><originalsourceid>FETCH-LOGICAL-c358t-71b5fccaac1f650ad0c8f8cec9bd83b5d459dc0920c311c6a5bd3d6a364580ba3</originalsourceid><addsrcrecordid>eNo9kF1LwzAUhosoOOb-gFcBr7zYPGmaNr0c86PCUBG9DmmS0syuqUk66b-3o7qr83J4eHl5ougawwpjIHdv9eDf9eF-lbMVhgQonEWzOMlgCRDn56eM4TJaeL-DMaaQZxjPopdC7E0TbGtEi_q2tH2rtGq19-jgkQ-iNI0JA_oxoUYjIrquMVIEY1sULCqsG3n_ZVCotXXDVXRRicbrxd-dR5-PDx-bYrl9fXrerLdLSSgLywyXtJJSCImrlIJQIFnFpJZ5qRgpqUporiTkMUiCsUwFLRVRqSBpQhmUgsyj26m3Fg3vnNkLN3ArDC_WW378Ac5SBpgc8MjeTGzn7HevfeA727t2nMdjTIHGcULJSMUTJZ313unqVIuBHzXzf808Z3zSTH4BJw5ygQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2150522453</pqid></control><display><type>article</type><title>Hamiltonian unboundedness vs stability with an application to Horndeski theory</title><source>American Physical Society Journals</source><creator>Babichev, E. ; Charmousis, C. ; Esposito-Farèse, G. ; Lehébel, A.</creator><creatorcontrib>Babichev, E. ; Charmousis, C. ; Esposito-Farèse, G. ; Lehébel, A.</creatorcontrib><description>A Hamiltonian density bounded from below implies that the lowest-energy state is stable. We point out, contrary to common lore, that an unbounded Hamiltonian density does not necessarily imply an instability: Stability is indeed a coordinate-independent property, whereas the Hamiltonian density does depend on the choice of coordinates. We discuss in detail the relation between the two, starting from k-essence and extending our discussion to general field theories. We give the correct stability criterion, using the relative orientation of the causal cones for all propagating degrees of freedom. We then apply this criterion to an exact Schwarzschild-de Sitter solution of a beyond-Horndeski theory, while taking into account the recent experimental constraint regarding the speed of gravitational waves. We extract the spin-2 and spin-0 causal cones by analyzing respectively all the odd-parity and the ℓ=0 even-parity modes. Contrary to a claim in the literature, we prove that this solution does not exhibit any kinetic instability for a given range of parameters defining the theory.</description><identifier>ISSN: 2470-0010</identifier><identifier>EISSN: 2470-0029</identifier><identifier>DOI: 10.1103/PhysRevD.98.104050</identifier><language>eng</language><publisher>College Park: American Physical Society</publisher><subject>Cones ; Density ; General Relativity and Quantum Cosmology ; Gravitational waves ; High Energy Physics - Theory ; Parity ; Physics ; Stability ; Stability criteria</subject><ispartof>Physical review. D, 2018, Vol.98 (10), p.104050, Article 104050</ispartof><rights>Copyright American Physical Society Nov 15, 2018</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c358t-71b5fccaac1f650ad0c8f8cec9bd83b5d459dc0920c311c6a5bd3d6a364580ba3</citedby><cites>FETCH-LOGICAL-c358t-71b5fccaac1f650ad0c8f8cec9bd83b5d459dc0920c311c6a5bd3d6a364580ba3</cites><orcidid>0000-0003-4932-587X ; 0000-0002-3338-3365 ; 0000-0002-5364-4753</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,2862,2863,4009,27902,27903,27904</link.rule.ids><backlink>$$Uhttps://hal.science/hal-01768013$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Babichev, E.</creatorcontrib><creatorcontrib>Charmousis, C.</creatorcontrib><creatorcontrib>Esposito-Farèse, G.</creatorcontrib><creatorcontrib>Lehébel, A.</creatorcontrib><title>Hamiltonian unboundedness vs stability with an application to Horndeski theory</title><title>Physical review. D</title><description>A Hamiltonian density bounded from below implies that the lowest-energy state is stable. We point out, contrary to common lore, that an unbounded Hamiltonian density does not necessarily imply an instability: Stability is indeed a coordinate-independent property, whereas the Hamiltonian density does depend on the choice of coordinates. We discuss in detail the relation between the two, starting from k-essence and extending our discussion to general field theories. We give the correct stability criterion, using the relative orientation of the causal cones for all propagating degrees of freedom. We then apply this criterion to an exact Schwarzschild-de Sitter solution of a beyond-Horndeski theory, while taking into account the recent experimental constraint regarding the speed of gravitational waves. We extract the spin-2 and spin-0 causal cones by analyzing respectively all the odd-parity and the ℓ=0 even-parity modes. Contrary to a claim in the literature, we prove that this solution does not exhibit any kinetic instability for a given range of parameters defining the theory.</description><subject>Cones</subject><subject>Density</subject><subject>General Relativity and Quantum Cosmology</subject><subject>Gravitational waves</subject><subject>High Energy Physics - Theory</subject><subject>Parity</subject><subject>Physics</subject><subject>Stability</subject><subject>Stability criteria</subject><issn>2470-0010</issn><issn>2470-0029</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNo9kF1LwzAUhosoOOb-gFcBr7zYPGmaNr0c86PCUBG9DmmS0syuqUk66b-3o7qr83J4eHl5ougawwpjIHdv9eDf9eF-lbMVhgQonEWzOMlgCRDn56eM4TJaeL-DMaaQZxjPopdC7E0TbGtEi_q2tH2rtGq19-jgkQ-iNI0JA_oxoUYjIrquMVIEY1sULCqsG3n_ZVCotXXDVXRRicbrxd-dR5-PDx-bYrl9fXrerLdLSSgLywyXtJJSCImrlIJQIFnFpJZ5qRgpqUporiTkMUiCsUwFLRVRqSBpQhmUgsyj26m3Fg3vnNkLN3ArDC_WW378Ac5SBpgc8MjeTGzn7HevfeA727t2nMdjTIHGcULJSMUTJZ313unqVIuBHzXzf808Z3zSTH4BJw5ygQ</recordid><startdate>2018</startdate><enddate>2018</enddate><creator>Babichev, E.</creator><creator>Charmousis, C.</creator><creator>Esposito-Farèse, G.</creator><creator>Lehébel, A.</creator><general>American Physical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0003-4932-587X</orcidid><orcidid>https://orcid.org/0000-0002-3338-3365</orcidid><orcidid>https://orcid.org/0000-0002-5364-4753</orcidid></search><sort><creationdate>2018</creationdate><title>Hamiltonian unboundedness vs stability with an application to Horndeski theory</title><author>Babichev, E. ; Charmousis, C. ; Esposito-Farèse, G. ; Lehébel, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c358t-71b5fccaac1f650ad0c8f8cec9bd83b5d459dc0920c311c6a5bd3d6a364580ba3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Cones</topic><topic>Density</topic><topic>General Relativity and Quantum Cosmology</topic><topic>Gravitational waves</topic><topic>High Energy Physics - Theory</topic><topic>Parity</topic><topic>Physics</topic><topic>Stability</topic><topic>Stability criteria</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Babichev, E.</creatorcontrib><creatorcontrib>Charmousis, C.</creatorcontrib><creatorcontrib>Esposito-Farèse, G.</creatorcontrib><creatorcontrib>Lehébel, A.</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Physical review. D</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Babichev, E.</au><au>Charmousis, C.</au><au>Esposito-Farèse, G.</au><au>Lehébel, A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hamiltonian unboundedness vs stability with an application to Horndeski theory</atitle><jtitle>Physical review. D</jtitle><date>2018</date><risdate>2018</risdate><volume>98</volume><issue>10</issue><spage>104050</spage><pages>104050-</pages><artnum>104050</artnum><issn>2470-0010</issn><eissn>2470-0029</eissn><abstract>A Hamiltonian density bounded from below implies that the lowest-energy state is stable. We point out, contrary to common lore, that an unbounded Hamiltonian density does not necessarily imply an instability: Stability is indeed a coordinate-independent property, whereas the Hamiltonian density does depend on the choice of coordinates. We discuss in detail the relation between the two, starting from k-essence and extending our discussion to general field theories. We give the correct stability criterion, using the relative orientation of the causal cones for all propagating degrees of freedom. We then apply this criterion to an exact Schwarzschild-de Sitter solution of a beyond-Horndeski theory, while taking into account the recent experimental constraint regarding the speed of gravitational waves. We extract the spin-2 and spin-0 causal cones by analyzing respectively all the odd-parity and the ℓ=0 even-parity modes. Contrary to a claim in the literature, we prove that this solution does not exhibit any kinetic instability for a given range of parameters defining the theory.</abstract><cop>College Park</cop><pub>American Physical Society</pub><doi>10.1103/PhysRevD.98.104050</doi><orcidid>https://orcid.org/0000-0003-4932-587X</orcidid><orcidid>https://orcid.org/0000-0002-3338-3365</orcidid><orcidid>https://orcid.org/0000-0002-5364-4753</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2470-0010 |
ispartof | Physical review. D, 2018, Vol.98 (10), p.104050, Article 104050 |
issn | 2470-0010 2470-0029 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_01768013v1 |
source | American Physical Society Journals |
subjects | Cones Density General Relativity and Quantum Cosmology Gravitational waves High Energy Physics - Theory Parity Physics Stability Stability criteria |
title | Hamiltonian unboundedness vs stability with an application to Horndeski theory |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T06%3A28%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hamiltonian%20unboundedness%20vs%20stability%20with%20an%20application%20to%20Horndeski%20theory&rft.jtitle=Physical%20review.%20D&rft.au=Babichev,%20E.&rft.date=2018&rft.volume=98&rft.issue=10&rft.spage=104050&rft.pages=104050-&rft.artnum=104050&rft.issn=2470-0010&rft.eissn=2470-0029&rft_id=info:doi/10.1103/PhysRevD.98.104050&rft_dat=%3Cproquest_hal_p%3E2150522453%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2150522453&rft_id=info:pmid/&rfr_iscdi=true |