Granulocyte-Colony Stimulating Factor Nanocarriers for Stimulation of the Immune System (Part II): Dose-Dependent Biodistribution and In Vivo Antitumor Efficacy in Combination with Rituximab
The purpose of immuno-modulation is to increase or restore the action of immunocompetent cells against tumors with or without the use of monoclonal antibodies. The innate immune system is a key player in various pathological situations, but cells of this system appear to be inhibited or insufficient...
Gespeichert in:
Veröffentlicht in: | Bioconjugate chemistry 2018-03, Vol.29 (3), p.804-812 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 812 |
---|---|
container_issue | 3 |
container_start_page | 804 |
container_title | Bioconjugate chemistry |
container_volume | 29 |
creator | Kryza, David De Crozals, Gabriel Mathe, Doriane Taleb Sidi-Boumedine, Jacqueline Janier, Marc Chaix, Carole Dumontet, Charles |
description | The purpose of immuno-modulation is to increase or restore the action of immunocompetent cells against tumors with or without the use of monoclonal antibodies. The innate immune system is a key player in various pathological situations, but cells of this system appear to be inhibited or insufficiently active in malignancy or severe infectious diseases. The present study was designed to investigate therapeutic value of nanoparticles (NPs) coupled with bioactive hematopoietic growth factors acting on the innate immune system. The use of nanoparticles (NPs) allowing multimodal detection and multifunctional grafting are currently of great interest for theranostic purposes. In the present work, we have evaluated the impact of the number of granulocyte-colony stimulating factor (G-CSF) grafted on the surface on the NPs on the biodistribution in mice thanks to indium 111 radiolabeling. Furthermore, we have investigated whether grafted G-CSF NPs could stimulate the immune innate system and enhance the therapeutic efficacy of the monoclonal antibody rituximab in mice bearing human lymphoma xenografts. Following intravenous (i.v.) administration of NP-DTPA and NP-DTPA/G-CSF-X high levels of radioactivity were observed in the liver. Furthermore, spleen uptake was correlated with the number of G-CSF molecules grafted on the surface of the NPs. Combining NP-DTPA/G-CSF-34 with rituximab strongly reduced RL tumor growth compared to rituximab alone or in combination with conventional G-CSF + rituximab. The use of highly loaded G-CSF NPs as immune adjuvants could enhance the antitumor activity of therapeutic monoclonal antibodies by amplifying tumor cell destruction by innate immune cells. |
doi_str_mv | 10.1021/acs.bioconjchem.7b00606 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01767371v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1982843252</sourcerecordid><originalsourceid>FETCH-LOGICAL-a419t-8da00aa92aaa2f9c9aa507f4bfd7bfd661fb48cf1b6b3b1fc9f95129bda6cb193</originalsourceid><addsrcrecordid>eNqFkl2PEyEYhSdG466rf0FJvNm9mArMJ97V7leTRo2r3pIXBizNDHSBWZ0_52-T2toYb7wgkDfPOQfCybJXBM8IpuQNyDATxklnN3KthlkjMK5x_Sg7JRXFedkS-jidcVnkpMX0JHsWwgZjzEhLn2YnlNG2qCp2mv288WDH3skpqnzhemcndBfNMPYQjf2GrkFG59F7sE6C90b5gHQaHBlnkdMorhVaDsNoFbqbQlQDOv8IPqLl8uItunRB5Zdqq2ynbETvjOtMiN6I8bccbIeWFn01Dw7NbTRxHFLAldZGgpyQsWjhBmHsPuy7iWv0KUE_zADiefZEQx_Ui8N-ln25vvq8uM1XH26Wi_kqh5KwmLcdYAzAKABQzSQDqHCjS6G7Jq26JlqUrdRE1KIQREumWUUoEx3UUhBWnGUXe9819HzrU7SfuAPDb-crvpth0tRN0ZAHktjzPbv17n5UIfLBBKn6HqxyY-CEtbQtC1rRhL7-B9240dv0Ek5x2zRF0eCdYbOnpHcheKWPNyCY7-rAUx34X3Xghzok5cuD_ygG1R11f_4_AcUe2Dkcs_9n-wuu98rx</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2087733701</pqid></control><display><type>article</type><title>Granulocyte-Colony Stimulating Factor Nanocarriers for Stimulation of the Immune System (Part II): Dose-Dependent Biodistribution and In Vivo Antitumor Efficacy in Combination with Rituximab</title><source>MEDLINE</source><source>American Chemical Society Journals</source><creator>Kryza, David ; De Crozals, Gabriel ; Mathe, Doriane ; Taleb Sidi-Boumedine, Jacqueline ; Janier, Marc ; Chaix, Carole ; Dumontet, Charles</creator><creatorcontrib>Kryza, David ; De Crozals, Gabriel ; Mathe, Doriane ; Taleb Sidi-Boumedine, Jacqueline ; Janier, Marc ; Chaix, Carole ; Dumontet, Charles</creatorcontrib><description>The purpose of immuno-modulation is to increase or restore the action of immunocompetent cells against tumors with or without the use of monoclonal antibodies. The innate immune system is a key player in various pathological situations, but cells of this system appear to be inhibited or insufficiently active in malignancy or severe infectious diseases. The present study was designed to investigate therapeutic value of nanoparticles (NPs) coupled with bioactive hematopoietic growth factors acting on the innate immune system. The use of nanoparticles (NPs) allowing multimodal detection and multifunctional grafting are currently of great interest for theranostic purposes. In the present work, we have evaluated the impact of the number of granulocyte-colony stimulating factor (G-CSF) grafted on the surface on the NPs on the biodistribution in mice thanks to indium 111 radiolabeling. Furthermore, we have investigated whether grafted G-CSF NPs could stimulate the immune innate system and enhance the therapeutic efficacy of the monoclonal antibody rituximab in mice bearing human lymphoma xenografts. Following intravenous (i.v.) administration of NP-DTPA and NP-DTPA/G-CSF-X high levels of radioactivity were observed in the liver. Furthermore, spleen uptake was correlated with the number of G-CSF molecules grafted on the surface of the NPs. Combining NP-DTPA/G-CSF-34 with rituximab strongly reduced RL tumor growth compared to rituximab alone or in combination with conventional G-CSF + rituximab. The use of highly loaded G-CSF NPs as immune adjuvants could enhance the antitumor activity of therapeutic monoclonal antibodies by amplifying tumor cell destruction by innate immune cells.</description><identifier>ISSN: 1043-1802</identifier><identifier>EISSN: 1520-4812</identifier><identifier>DOI: 10.1021/acs.bioconjchem.7b00606</identifier><identifier>PMID: 29283559</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject><![CDATA[Adjuvants ; Adjuvants, Immunologic - administration & dosage ; Adjuvants, Immunologic - pharmacokinetics ; Adjuvants, Immunologic - pharmacology ; Adjuvants, Immunologic - therapeutic use ; Animals ; Anticancer properties ; Antineoplastic Agents, Immunological - administration & dosage ; Antineoplastic Agents, Immunological - pharmacokinetics ; Antineoplastic Agents, Immunological - pharmacology ; Antineoplastic Agents, Immunological - therapeutic use ; Antineoplastic Combined Chemotherapy Protocols - administration & dosage ; Antineoplastic Combined Chemotherapy Protocols - pharmacokinetics ; Antineoplastic Combined Chemotherapy Protocols - pharmacology ; Antineoplastic Combined Chemotherapy Protocols - therapeutic use ; Antitumor activity ; Biochemistry, Molecular Biology ; Chemical Sciences ; Colonies ; Colony-stimulating factor ; Drug Carriers - chemistry ; Drug Synergism ; Female ; Grafting ; Granulocyte colony-stimulating factor ; Granulocyte Colony-Stimulating Factor - administration & dosage ; Granulocyte Colony-Stimulating Factor - pharmacokinetics ; Granulocyte Colony-Stimulating Factor - pharmacology ; Granulocyte Colony-Stimulating Factor - therapeutic use ; Growth factors ; Humans ; Immune system ; Immunoglobulins ; Immunotherapy ; Indium ; Infectious diseases ; Innate immunity ; Intravenous administration ; Leukocytes (granulocytic) ; Life Sciences ; Liver ; Lymphoma ; Lymphoma - drug therapy ; Lymphoma - immunology ; Malignancy ; Mice ; Mice, Inbred C57BL ; Mice, SCID ; Monoclonal antibodies ; Nanoparticles ; Nanoparticles - chemistry ; Radioactivity ; Radiolabelling ; Rituximab ; Rituximab - administration & dosage ; Rituximab - pharmacokinetics ; Rituximab - pharmacology ; Rituximab - therapeutic use ; Series & special reports ; Silicon Dioxide - chemistry ; Spleen ; Targeted cancer therapy ; Tissue Distribution ; Tumors ; Xenografts ; Xenotransplantation]]></subject><ispartof>Bioconjugate chemistry, 2018-03, Vol.29 (3), p.804-812</ispartof><rights>Copyright American Chemical Society Mar 21, 2018</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a419t-8da00aa92aaa2f9c9aa507f4bfd7bfd661fb48cf1b6b3b1fc9f95129bda6cb193</citedby><cites>FETCH-LOGICAL-a419t-8da00aa92aaa2f9c9aa507f4bfd7bfd661fb48cf1b6b3b1fc9f95129bda6cb193</cites><orcidid>0000-0002-3765-2964 ; 0000-0003-4882-2364 ; 0000-0003-1875-134X ; 0000-0001-5937-9180</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.bioconjchem.7b00606$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.bioconjchem.7b00606$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,780,784,885,2763,27074,27922,27923,56736,56786</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29283559$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-01767371$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Kryza, David</creatorcontrib><creatorcontrib>De Crozals, Gabriel</creatorcontrib><creatorcontrib>Mathe, Doriane</creatorcontrib><creatorcontrib>Taleb Sidi-Boumedine, Jacqueline</creatorcontrib><creatorcontrib>Janier, Marc</creatorcontrib><creatorcontrib>Chaix, Carole</creatorcontrib><creatorcontrib>Dumontet, Charles</creatorcontrib><title>Granulocyte-Colony Stimulating Factor Nanocarriers for Stimulation of the Immune System (Part II): Dose-Dependent Biodistribution and In Vivo Antitumor Efficacy in Combination with Rituximab</title><title>Bioconjugate chemistry</title><addtitle>Bioconjugate Chem</addtitle><description>The purpose of immuno-modulation is to increase or restore the action of immunocompetent cells against tumors with or without the use of monoclonal antibodies. The innate immune system is a key player in various pathological situations, but cells of this system appear to be inhibited or insufficiently active in malignancy or severe infectious diseases. The present study was designed to investigate therapeutic value of nanoparticles (NPs) coupled with bioactive hematopoietic growth factors acting on the innate immune system. The use of nanoparticles (NPs) allowing multimodal detection and multifunctional grafting are currently of great interest for theranostic purposes. In the present work, we have evaluated the impact of the number of granulocyte-colony stimulating factor (G-CSF) grafted on the surface on the NPs on the biodistribution in mice thanks to indium 111 radiolabeling. Furthermore, we have investigated whether grafted G-CSF NPs could stimulate the immune innate system and enhance the therapeutic efficacy of the monoclonal antibody rituximab in mice bearing human lymphoma xenografts. Following intravenous (i.v.) administration of NP-DTPA and NP-DTPA/G-CSF-X high levels of radioactivity were observed in the liver. Furthermore, spleen uptake was correlated with the number of G-CSF molecules grafted on the surface of the NPs. Combining NP-DTPA/G-CSF-34 with rituximab strongly reduced RL tumor growth compared to rituximab alone or in combination with conventional G-CSF + rituximab. The use of highly loaded G-CSF NPs as immune adjuvants could enhance the antitumor activity of therapeutic monoclonal antibodies by amplifying tumor cell destruction by innate immune cells.</description><subject>Adjuvants</subject><subject>Adjuvants, Immunologic - administration & dosage</subject><subject>Adjuvants, Immunologic - pharmacokinetics</subject><subject>Adjuvants, Immunologic - pharmacology</subject><subject>Adjuvants, Immunologic - therapeutic use</subject><subject>Animals</subject><subject>Anticancer properties</subject><subject>Antineoplastic Agents, Immunological - administration & dosage</subject><subject>Antineoplastic Agents, Immunological - pharmacokinetics</subject><subject>Antineoplastic Agents, Immunological - pharmacology</subject><subject>Antineoplastic Agents, Immunological - therapeutic use</subject><subject>Antineoplastic Combined Chemotherapy Protocols - administration & dosage</subject><subject>Antineoplastic Combined Chemotherapy Protocols - pharmacokinetics</subject><subject>Antineoplastic Combined Chemotherapy Protocols - pharmacology</subject><subject>Antineoplastic Combined Chemotherapy Protocols - therapeutic use</subject><subject>Antitumor activity</subject><subject>Biochemistry, Molecular Biology</subject><subject>Chemical Sciences</subject><subject>Colonies</subject><subject>Colony-stimulating factor</subject><subject>Drug Carriers - chemistry</subject><subject>Drug Synergism</subject><subject>Female</subject><subject>Grafting</subject><subject>Granulocyte colony-stimulating factor</subject><subject>Granulocyte Colony-Stimulating Factor - administration & dosage</subject><subject>Granulocyte Colony-Stimulating Factor - pharmacokinetics</subject><subject>Granulocyte Colony-Stimulating Factor - pharmacology</subject><subject>Granulocyte Colony-Stimulating Factor - therapeutic use</subject><subject>Growth factors</subject><subject>Humans</subject><subject>Immune system</subject><subject>Immunoglobulins</subject><subject>Immunotherapy</subject><subject>Indium</subject><subject>Infectious diseases</subject><subject>Innate immunity</subject><subject>Intravenous administration</subject><subject>Leukocytes (granulocytic)</subject><subject>Life Sciences</subject><subject>Liver</subject><subject>Lymphoma</subject><subject>Lymphoma - drug therapy</subject><subject>Lymphoma - immunology</subject><subject>Malignancy</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Mice, SCID</subject><subject>Monoclonal antibodies</subject><subject>Nanoparticles</subject><subject>Nanoparticles - chemistry</subject><subject>Radioactivity</subject><subject>Radiolabelling</subject><subject>Rituximab</subject><subject>Rituximab - administration & dosage</subject><subject>Rituximab - pharmacokinetics</subject><subject>Rituximab - pharmacology</subject><subject>Rituximab - therapeutic use</subject><subject>Series & special reports</subject><subject>Silicon Dioxide - chemistry</subject><subject>Spleen</subject><subject>Targeted cancer therapy</subject><subject>Tissue Distribution</subject><subject>Tumors</subject><subject>Xenografts</subject><subject>Xenotransplantation</subject><issn>1043-1802</issn><issn>1520-4812</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkl2PEyEYhSdG466rf0FJvNm9mArMJ97V7leTRo2r3pIXBizNDHSBWZ0_52-T2toYb7wgkDfPOQfCybJXBM8IpuQNyDATxklnN3KthlkjMK5x_Sg7JRXFedkS-jidcVnkpMX0JHsWwgZjzEhLn2YnlNG2qCp2mv288WDH3skpqnzhemcndBfNMPYQjf2GrkFG59F7sE6C90b5gHQaHBlnkdMorhVaDsNoFbqbQlQDOv8IPqLl8uItunRB5Zdqq2ynbETvjOtMiN6I8bccbIeWFn01Dw7NbTRxHFLAldZGgpyQsWjhBmHsPuy7iWv0KUE_zADiefZEQx_Ui8N-ln25vvq8uM1XH26Wi_kqh5KwmLcdYAzAKABQzSQDqHCjS6G7Jq26JlqUrdRE1KIQREumWUUoEx3UUhBWnGUXe9819HzrU7SfuAPDb-crvpth0tRN0ZAHktjzPbv17n5UIfLBBKn6HqxyY-CEtbQtC1rRhL7-B9240dv0Ek5x2zRF0eCdYbOnpHcheKWPNyCY7-rAUx34X3Xghzok5cuD_ygG1R11f_4_AcUe2Dkcs_9n-wuu98rx</recordid><startdate>20180321</startdate><enddate>20180321</enddate><creator>Kryza, David</creator><creator>De Crozals, Gabriel</creator><creator>Mathe, Doriane</creator><creator>Taleb Sidi-Boumedine, Jacqueline</creator><creator>Janier, Marc</creator><creator>Chaix, Carole</creator><creator>Dumontet, Charles</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7TM</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7X8</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-3765-2964</orcidid><orcidid>https://orcid.org/0000-0003-4882-2364</orcidid><orcidid>https://orcid.org/0000-0003-1875-134X</orcidid><orcidid>https://orcid.org/0000-0001-5937-9180</orcidid></search><sort><creationdate>20180321</creationdate><title>Granulocyte-Colony Stimulating Factor Nanocarriers for Stimulation of the Immune System (Part II): Dose-Dependent Biodistribution and In Vivo Antitumor Efficacy in Combination with Rituximab</title><author>Kryza, David ; De Crozals, Gabriel ; Mathe, Doriane ; Taleb Sidi-Boumedine, Jacqueline ; Janier, Marc ; Chaix, Carole ; Dumontet, Charles</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a419t-8da00aa92aaa2f9c9aa507f4bfd7bfd661fb48cf1b6b3b1fc9f95129bda6cb193</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Adjuvants</topic><topic>Adjuvants, Immunologic - administration & dosage</topic><topic>Adjuvants, Immunologic - pharmacokinetics</topic><topic>Adjuvants, Immunologic - pharmacology</topic><topic>Adjuvants, Immunologic - therapeutic use</topic><topic>Animals</topic><topic>Anticancer properties</topic><topic>Antineoplastic Agents, Immunological - administration & dosage</topic><topic>Antineoplastic Agents, Immunological - pharmacokinetics</topic><topic>Antineoplastic Agents, Immunological - pharmacology</topic><topic>Antineoplastic Agents, Immunological - therapeutic use</topic><topic>Antineoplastic Combined Chemotherapy Protocols - administration & dosage</topic><topic>Antineoplastic Combined Chemotherapy Protocols - pharmacokinetics</topic><topic>Antineoplastic Combined Chemotherapy Protocols - pharmacology</topic><topic>Antineoplastic Combined Chemotherapy Protocols - therapeutic use</topic><topic>Antitumor activity</topic><topic>Biochemistry, Molecular Biology</topic><topic>Chemical Sciences</topic><topic>Colonies</topic><topic>Colony-stimulating factor</topic><topic>Drug Carriers - chemistry</topic><topic>Drug Synergism</topic><topic>Female</topic><topic>Grafting</topic><topic>Granulocyte colony-stimulating factor</topic><topic>Granulocyte Colony-Stimulating Factor - administration & dosage</topic><topic>Granulocyte Colony-Stimulating Factor - pharmacokinetics</topic><topic>Granulocyte Colony-Stimulating Factor - pharmacology</topic><topic>Granulocyte Colony-Stimulating Factor - therapeutic use</topic><topic>Growth factors</topic><topic>Humans</topic><topic>Immune system</topic><topic>Immunoglobulins</topic><topic>Immunotherapy</topic><topic>Indium</topic><topic>Infectious diseases</topic><topic>Innate immunity</topic><topic>Intravenous administration</topic><topic>Leukocytes (granulocytic)</topic><topic>Life Sciences</topic><topic>Liver</topic><topic>Lymphoma</topic><topic>Lymphoma - drug therapy</topic><topic>Lymphoma - immunology</topic><topic>Malignancy</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Mice, SCID</topic><topic>Monoclonal antibodies</topic><topic>Nanoparticles</topic><topic>Nanoparticles - chemistry</topic><topic>Radioactivity</topic><topic>Radiolabelling</topic><topic>Rituximab</topic><topic>Rituximab - administration & dosage</topic><topic>Rituximab - pharmacokinetics</topic><topic>Rituximab - pharmacology</topic><topic>Rituximab - therapeutic use</topic><topic>Series & special reports</topic><topic>Silicon Dioxide - chemistry</topic><topic>Spleen</topic><topic>Targeted cancer therapy</topic><topic>Tissue Distribution</topic><topic>Tumors</topic><topic>Xenografts</topic><topic>Xenotransplantation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kryza, David</creatorcontrib><creatorcontrib>De Crozals, Gabriel</creatorcontrib><creatorcontrib>Mathe, Doriane</creatorcontrib><creatorcontrib>Taleb Sidi-Boumedine, Jacqueline</creatorcontrib><creatorcontrib>Janier, Marc</creatorcontrib><creatorcontrib>Chaix, Carole</creatorcontrib><creatorcontrib>Dumontet, Charles</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Bioconjugate chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kryza, David</au><au>De Crozals, Gabriel</au><au>Mathe, Doriane</au><au>Taleb Sidi-Boumedine, Jacqueline</au><au>Janier, Marc</au><au>Chaix, Carole</au><au>Dumontet, Charles</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Granulocyte-Colony Stimulating Factor Nanocarriers for Stimulation of the Immune System (Part II): Dose-Dependent Biodistribution and In Vivo Antitumor Efficacy in Combination with Rituximab</atitle><jtitle>Bioconjugate chemistry</jtitle><addtitle>Bioconjugate Chem</addtitle><date>2018-03-21</date><risdate>2018</risdate><volume>29</volume><issue>3</issue><spage>804</spage><epage>812</epage><pages>804-812</pages><issn>1043-1802</issn><eissn>1520-4812</eissn><abstract>The purpose of immuno-modulation is to increase or restore the action of immunocompetent cells against tumors with or without the use of monoclonal antibodies. The innate immune system is a key player in various pathological situations, but cells of this system appear to be inhibited or insufficiently active in malignancy or severe infectious diseases. The present study was designed to investigate therapeutic value of nanoparticles (NPs) coupled with bioactive hematopoietic growth factors acting on the innate immune system. The use of nanoparticles (NPs) allowing multimodal detection and multifunctional grafting are currently of great interest for theranostic purposes. In the present work, we have evaluated the impact of the number of granulocyte-colony stimulating factor (G-CSF) grafted on the surface on the NPs on the biodistribution in mice thanks to indium 111 radiolabeling. Furthermore, we have investigated whether grafted G-CSF NPs could stimulate the immune innate system and enhance the therapeutic efficacy of the monoclonal antibody rituximab in mice bearing human lymphoma xenografts. Following intravenous (i.v.) administration of NP-DTPA and NP-DTPA/G-CSF-X high levels of radioactivity were observed in the liver. Furthermore, spleen uptake was correlated with the number of G-CSF molecules grafted on the surface of the NPs. Combining NP-DTPA/G-CSF-34 with rituximab strongly reduced RL tumor growth compared to rituximab alone or in combination with conventional G-CSF + rituximab. The use of highly loaded G-CSF NPs as immune adjuvants could enhance the antitumor activity of therapeutic monoclonal antibodies by amplifying tumor cell destruction by innate immune cells.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>29283559</pmid><doi>10.1021/acs.bioconjchem.7b00606</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-3765-2964</orcidid><orcidid>https://orcid.org/0000-0003-4882-2364</orcidid><orcidid>https://orcid.org/0000-0003-1875-134X</orcidid><orcidid>https://orcid.org/0000-0001-5937-9180</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1043-1802 |
ispartof | Bioconjugate chemistry, 2018-03, Vol.29 (3), p.804-812 |
issn | 1043-1802 1520-4812 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_01767371v1 |
source | MEDLINE; American Chemical Society Journals |
subjects | Adjuvants Adjuvants, Immunologic - administration & dosage Adjuvants, Immunologic - pharmacokinetics Adjuvants, Immunologic - pharmacology Adjuvants, Immunologic - therapeutic use Animals Anticancer properties Antineoplastic Agents, Immunological - administration & dosage Antineoplastic Agents, Immunological - pharmacokinetics Antineoplastic Agents, Immunological - pharmacology Antineoplastic Agents, Immunological - therapeutic use Antineoplastic Combined Chemotherapy Protocols - administration & dosage Antineoplastic Combined Chemotherapy Protocols - pharmacokinetics Antineoplastic Combined Chemotherapy Protocols - pharmacology Antineoplastic Combined Chemotherapy Protocols - therapeutic use Antitumor activity Biochemistry, Molecular Biology Chemical Sciences Colonies Colony-stimulating factor Drug Carriers - chemistry Drug Synergism Female Grafting Granulocyte colony-stimulating factor Granulocyte Colony-Stimulating Factor - administration & dosage Granulocyte Colony-Stimulating Factor - pharmacokinetics Granulocyte Colony-Stimulating Factor - pharmacology Granulocyte Colony-Stimulating Factor - therapeutic use Growth factors Humans Immune system Immunoglobulins Immunotherapy Indium Infectious diseases Innate immunity Intravenous administration Leukocytes (granulocytic) Life Sciences Liver Lymphoma Lymphoma - drug therapy Lymphoma - immunology Malignancy Mice Mice, Inbred C57BL Mice, SCID Monoclonal antibodies Nanoparticles Nanoparticles - chemistry Radioactivity Radiolabelling Rituximab Rituximab - administration & dosage Rituximab - pharmacokinetics Rituximab - pharmacology Rituximab - therapeutic use Series & special reports Silicon Dioxide - chemistry Spleen Targeted cancer therapy Tissue Distribution Tumors Xenografts Xenotransplantation |
title | Granulocyte-Colony Stimulating Factor Nanocarriers for Stimulation of the Immune System (Part II): Dose-Dependent Biodistribution and In Vivo Antitumor Efficacy in Combination with Rituximab |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T11%3A58%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Granulocyte-Colony%20Stimulating%20Factor%20Nanocarriers%20for%20Stimulation%20of%20the%20Immune%20System%20(Part%20II):%20Dose-Dependent%20Biodistribution%20and%20In%20Vivo%20Antitumor%20Efficacy%20in%20Combination%20with%20Rituximab&rft.jtitle=Bioconjugate%20chemistry&rft.au=Kryza,%20David&rft.date=2018-03-21&rft.volume=29&rft.issue=3&rft.spage=804&rft.epage=812&rft.pages=804-812&rft.issn=1043-1802&rft.eissn=1520-4812&rft_id=info:doi/10.1021/acs.bioconjchem.7b00606&rft_dat=%3Cproquest_hal_p%3E1982843252%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2087733701&rft_id=info:pmid/29283559&rfr_iscdi=true |