Granulocyte-Colony Stimulating Factor Nanocarriers for Stimulation of the Immune System (Part II): Dose-Dependent Biodistribution and In Vivo Antitumor Efficacy in Combination with Rituximab

The purpose of immuno-modulation is to increase or restore the action of immunocompetent cells against tumors with or without the use of monoclonal antibodies. The innate immune system is a key player in various pathological situations, but cells of this system appear to be inhibited or insufficient...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bioconjugate chemistry 2018-03, Vol.29 (3), p.804-812
Hauptverfasser: Kryza, David, De Crozals, Gabriel, Mathe, Doriane, Taleb Sidi-Boumedine, Jacqueline, Janier, Marc, Chaix, Carole, Dumontet, Charles
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 812
container_issue 3
container_start_page 804
container_title Bioconjugate chemistry
container_volume 29
creator Kryza, David
De Crozals, Gabriel
Mathe, Doriane
Taleb Sidi-Boumedine, Jacqueline
Janier, Marc
Chaix, Carole
Dumontet, Charles
description The purpose of immuno-modulation is to increase or restore the action of immunocompetent cells against tumors with or without the use of monoclonal antibodies. The innate immune system is a key player in various pathological situations, but cells of this system appear to be inhibited or insufficiently active in malignancy or severe infectious diseases. The present study was designed to investigate therapeutic value of nanoparticles (NPs) coupled with bioactive hematopoietic growth factors acting on the innate immune system. The use of nanoparticles (NPs) allowing multimodal detection and multifunctional grafting are currently of great interest for theranostic purposes. In the present work, we have evaluated the impact of the number of granulocyte-colony stimulating factor (G-CSF) grafted on the surface on the NPs on the biodistribution in mice thanks to indium 111 radiolabeling. Furthermore, we have investigated whether grafted G-CSF NPs could stimulate the immune innate system and enhance the therapeutic efficacy of the monoclonal antibody rituximab in mice bearing human lymphoma xenografts. Following intravenous (i.v.) administration of NP-DTPA and NP-DTPA/G-CSF-X high levels of radioactivity were observed in the liver. Furthermore, spleen uptake was correlated with the number of G-CSF molecules grafted on the surface of the NPs. Combining NP-DTPA/G-CSF-34 with rituximab strongly reduced RL tumor growth compared to rituximab alone or in combination with conventional G-CSF + rituximab. The use of highly loaded G-CSF NPs as immune adjuvants could enhance the antitumor activity of therapeutic monoclonal antibodies by amplifying tumor cell destruction by innate immune cells.
doi_str_mv 10.1021/acs.bioconjchem.7b00606
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01767371v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1982843252</sourcerecordid><originalsourceid>FETCH-LOGICAL-a419t-8da00aa92aaa2f9c9aa507f4bfd7bfd661fb48cf1b6b3b1fc9f95129bda6cb193</originalsourceid><addsrcrecordid>eNqFkl2PEyEYhSdG466rf0FJvNm9mArMJ97V7leTRo2r3pIXBizNDHSBWZ0_52-T2toYb7wgkDfPOQfCybJXBM8IpuQNyDATxklnN3KthlkjMK5x_Sg7JRXFedkS-jidcVnkpMX0JHsWwgZjzEhLn2YnlNG2qCp2mv288WDH3skpqnzhemcndBfNMPYQjf2GrkFG59F7sE6C90b5gHQaHBlnkdMorhVaDsNoFbqbQlQDOv8IPqLl8uItunRB5Zdqq2ynbETvjOtMiN6I8bccbIeWFn01Dw7NbTRxHFLAldZGgpyQsWjhBmHsPuy7iWv0KUE_zADiefZEQx_Ui8N-ln25vvq8uM1XH26Wi_kqh5KwmLcdYAzAKABQzSQDqHCjS6G7Jq26JlqUrdRE1KIQREumWUUoEx3UUhBWnGUXe9819HzrU7SfuAPDb-crvpth0tRN0ZAHktjzPbv17n5UIfLBBKn6HqxyY-CEtbQtC1rRhL7-B9240dv0Ek5x2zRF0eCdYbOnpHcheKWPNyCY7-rAUx34X3Xghzok5cuD_ygG1R11f_4_AcUe2Dkcs_9n-wuu98rx</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2087733701</pqid></control><display><type>article</type><title>Granulocyte-Colony Stimulating Factor Nanocarriers for Stimulation of the Immune System (Part II): Dose-Dependent Biodistribution and In Vivo Antitumor Efficacy in Combination with Rituximab</title><source>MEDLINE</source><source>American Chemical Society Journals</source><creator>Kryza, David ; De Crozals, Gabriel ; Mathe, Doriane ; Taleb Sidi-Boumedine, Jacqueline ; Janier, Marc ; Chaix, Carole ; Dumontet, Charles</creator><creatorcontrib>Kryza, David ; De Crozals, Gabriel ; Mathe, Doriane ; Taleb Sidi-Boumedine, Jacqueline ; Janier, Marc ; Chaix, Carole ; Dumontet, Charles</creatorcontrib><description>The purpose of immuno-modulation is to increase or restore the action of immunocompetent cells against tumors with or without the use of monoclonal antibodies. The innate immune system is a key player in various pathological situations, but cells of this system appear to be inhibited or insufficiently active in malignancy or severe infectious diseases. The present study was designed to investigate therapeutic value of nanoparticles (NPs) coupled with bioactive hematopoietic growth factors acting on the innate immune system. The use of nanoparticles (NPs) allowing multimodal detection and multifunctional grafting are currently of great interest for theranostic purposes. In the present work, we have evaluated the impact of the number of granulocyte-colony stimulating factor (G-CSF) grafted on the surface on the NPs on the biodistribution in mice thanks to indium 111 radiolabeling. Furthermore, we have investigated whether grafted G-CSF NPs could stimulate the immune innate system and enhance the therapeutic efficacy of the monoclonal antibody rituximab in mice bearing human lymphoma xenografts. Following intravenous (i.v.) administration of NP-DTPA and NP-DTPA/G-CSF-X high levels of radioactivity were observed in the liver. Furthermore, spleen uptake was correlated with the number of G-CSF molecules grafted on the surface of the NPs. Combining NP-DTPA/G-CSF-34 with rituximab strongly reduced RL tumor growth compared to rituximab alone or in combination with conventional G-CSF + rituximab. The use of highly loaded G-CSF NPs as immune adjuvants could enhance the antitumor activity of therapeutic monoclonal antibodies by amplifying tumor cell destruction by innate immune cells.</description><identifier>ISSN: 1043-1802</identifier><identifier>EISSN: 1520-4812</identifier><identifier>DOI: 10.1021/acs.bioconjchem.7b00606</identifier><identifier>PMID: 29283559</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject><![CDATA[Adjuvants ; Adjuvants, Immunologic - administration & dosage ; Adjuvants, Immunologic - pharmacokinetics ; Adjuvants, Immunologic - pharmacology ; Adjuvants, Immunologic - therapeutic use ; Animals ; Anticancer properties ; Antineoplastic Agents, Immunological - administration & dosage ; Antineoplastic Agents, Immunological - pharmacokinetics ; Antineoplastic Agents, Immunological - pharmacology ; Antineoplastic Agents, Immunological - therapeutic use ; Antineoplastic Combined Chemotherapy Protocols - administration & dosage ; Antineoplastic Combined Chemotherapy Protocols - pharmacokinetics ; Antineoplastic Combined Chemotherapy Protocols - pharmacology ; Antineoplastic Combined Chemotherapy Protocols - therapeutic use ; Antitumor activity ; Biochemistry, Molecular Biology ; Chemical Sciences ; Colonies ; Colony-stimulating factor ; Drug Carriers - chemistry ; Drug Synergism ; Female ; Grafting ; Granulocyte colony-stimulating factor ; Granulocyte Colony-Stimulating Factor - administration & dosage ; Granulocyte Colony-Stimulating Factor - pharmacokinetics ; Granulocyte Colony-Stimulating Factor - pharmacology ; Granulocyte Colony-Stimulating Factor - therapeutic use ; Growth factors ; Humans ; Immune system ; Immunoglobulins ; Immunotherapy ; Indium ; Infectious diseases ; Innate immunity ; Intravenous administration ; Leukocytes (granulocytic) ; Life Sciences ; Liver ; Lymphoma ; Lymphoma - drug therapy ; Lymphoma - immunology ; Malignancy ; Mice ; Mice, Inbred C57BL ; Mice, SCID ; Monoclonal antibodies ; Nanoparticles ; Nanoparticles - chemistry ; Radioactivity ; Radiolabelling ; Rituximab ; Rituximab - administration & dosage ; Rituximab - pharmacokinetics ; Rituximab - pharmacology ; Rituximab - therapeutic use ; Series & special reports ; Silicon Dioxide - chemistry ; Spleen ; Targeted cancer therapy ; Tissue Distribution ; Tumors ; Xenografts ; Xenotransplantation]]></subject><ispartof>Bioconjugate chemistry, 2018-03, Vol.29 (3), p.804-812</ispartof><rights>Copyright American Chemical Society Mar 21, 2018</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a419t-8da00aa92aaa2f9c9aa507f4bfd7bfd661fb48cf1b6b3b1fc9f95129bda6cb193</citedby><cites>FETCH-LOGICAL-a419t-8da00aa92aaa2f9c9aa507f4bfd7bfd661fb48cf1b6b3b1fc9f95129bda6cb193</cites><orcidid>0000-0002-3765-2964 ; 0000-0003-4882-2364 ; 0000-0003-1875-134X ; 0000-0001-5937-9180</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.bioconjchem.7b00606$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.bioconjchem.7b00606$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,780,784,885,2763,27074,27922,27923,56736,56786</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29283559$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-01767371$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Kryza, David</creatorcontrib><creatorcontrib>De Crozals, Gabriel</creatorcontrib><creatorcontrib>Mathe, Doriane</creatorcontrib><creatorcontrib>Taleb Sidi-Boumedine, Jacqueline</creatorcontrib><creatorcontrib>Janier, Marc</creatorcontrib><creatorcontrib>Chaix, Carole</creatorcontrib><creatorcontrib>Dumontet, Charles</creatorcontrib><title>Granulocyte-Colony Stimulating Factor Nanocarriers for Stimulation of the Immune System (Part II): Dose-Dependent Biodistribution and In Vivo Antitumor Efficacy in Combination with Rituximab</title><title>Bioconjugate chemistry</title><addtitle>Bioconjugate Chem</addtitle><description>The purpose of immuno-modulation is to increase or restore the action of immunocompetent cells against tumors with or without the use of monoclonal antibodies. The innate immune system is a key player in various pathological situations, but cells of this system appear to be inhibited or insufficiently active in malignancy or severe infectious diseases. The present study was designed to investigate therapeutic value of nanoparticles (NPs) coupled with bioactive hematopoietic growth factors acting on the innate immune system. The use of nanoparticles (NPs) allowing multimodal detection and multifunctional grafting are currently of great interest for theranostic purposes. In the present work, we have evaluated the impact of the number of granulocyte-colony stimulating factor (G-CSF) grafted on the surface on the NPs on the biodistribution in mice thanks to indium 111 radiolabeling. Furthermore, we have investigated whether grafted G-CSF NPs could stimulate the immune innate system and enhance the therapeutic efficacy of the monoclonal antibody rituximab in mice bearing human lymphoma xenografts. Following intravenous (i.v.) administration of NP-DTPA and NP-DTPA/G-CSF-X high levels of radioactivity were observed in the liver. Furthermore, spleen uptake was correlated with the number of G-CSF molecules grafted on the surface of the NPs. Combining NP-DTPA/G-CSF-34 with rituximab strongly reduced RL tumor growth compared to rituximab alone or in combination with conventional G-CSF + rituximab. The use of highly loaded G-CSF NPs as immune adjuvants could enhance the antitumor activity of therapeutic monoclonal antibodies by amplifying tumor cell destruction by innate immune cells.</description><subject>Adjuvants</subject><subject>Adjuvants, Immunologic - administration &amp; dosage</subject><subject>Adjuvants, Immunologic - pharmacokinetics</subject><subject>Adjuvants, Immunologic - pharmacology</subject><subject>Adjuvants, Immunologic - therapeutic use</subject><subject>Animals</subject><subject>Anticancer properties</subject><subject>Antineoplastic Agents, Immunological - administration &amp; dosage</subject><subject>Antineoplastic Agents, Immunological - pharmacokinetics</subject><subject>Antineoplastic Agents, Immunological - pharmacology</subject><subject>Antineoplastic Agents, Immunological - therapeutic use</subject><subject>Antineoplastic Combined Chemotherapy Protocols - administration &amp; dosage</subject><subject>Antineoplastic Combined Chemotherapy Protocols - pharmacokinetics</subject><subject>Antineoplastic Combined Chemotherapy Protocols - pharmacology</subject><subject>Antineoplastic Combined Chemotherapy Protocols - therapeutic use</subject><subject>Antitumor activity</subject><subject>Biochemistry, Molecular Biology</subject><subject>Chemical Sciences</subject><subject>Colonies</subject><subject>Colony-stimulating factor</subject><subject>Drug Carriers - chemistry</subject><subject>Drug Synergism</subject><subject>Female</subject><subject>Grafting</subject><subject>Granulocyte colony-stimulating factor</subject><subject>Granulocyte Colony-Stimulating Factor - administration &amp; dosage</subject><subject>Granulocyte Colony-Stimulating Factor - pharmacokinetics</subject><subject>Granulocyte Colony-Stimulating Factor - pharmacology</subject><subject>Granulocyte Colony-Stimulating Factor - therapeutic use</subject><subject>Growth factors</subject><subject>Humans</subject><subject>Immune system</subject><subject>Immunoglobulins</subject><subject>Immunotherapy</subject><subject>Indium</subject><subject>Infectious diseases</subject><subject>Innate immunity</subject><subject>Intravenous administration</subject><subject>Leukocytes (granulocytic)</subject><subject>Life Sciences</subject><subject>Liver</subject><subject>Lymphoma</subject><subject>Lymphoma - drug therapy</subject><subject>Lymphoma - immunology</subject><subject>Malignancy</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Mice, SCID</subject><subject>Monoclonal antibodies</subject><subject>Nanoparticles</subject><subject>Nanoparticles - chemistry</subject><subject>Radioactivity</subject><subject>Radiolabelling</subject><subject>Rituximab</subject><subject>Rituximab - administration &amp; dosage</subject><subject>Rituximab - pharmacokinetics</subject><subject>Rituximab - pharmacology</subject><subject>Rituximab - therapeutic use</subject><subject>Series &amp; special reports</subject><subject>Silicon Dioxide - chemistry</subject><subject>Spleen</subject><subject>Targeted cancer therapy</subject><subject>Tissue Distribution</subject><subject>Tumors</subject><subject>Xenografts</subject><subject>Xenotransplantation</subject><issn>1043-1802</issn><issn>1520-4812</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkl2PEyEYhSdG466rf0FJvNm9mArMJ97V7leTRo2r3pIXBizNDHSBWZ0_52-T2toYb7wgkDfPOQfCybJXBM8IpuQNyDATxklnN3KthlkjMK5x_Sg7JRXFedkS-jidcVnkpMX0JHsWwgZjzEhLn2YnlNG2qCp2mv288WDH3skpqnzhemcndBfNMPYQjf2GrkFG59F7sE6C90b5gHQaHBlnkdMorhVaDsNoFbqbQlQDOv8IPqLl8uItunRB5Zdqq2ynbETvjOtMiN6I8bccbIeWFn01Dw7NbTRxHFLAldZGgpyQsWjhBmHsPuy7iWv0KUE_zADiefZEQx_Ui8N-ln25vvq8uM1XH26Wi_kqh5KwmLcdYAzAKABQzSQDqHCjS6G7Jq26JlqUrdRE1KIQREumWUUoEx3UUhBWnGUXe9819HzrU7SfuAPDb-crvpth0tRN0ZAHktjzPbv17n5UIfLBBKn6HqxyY-CEtbQtC1rRhL7-B9240dv0Ek5x2zRF0eCdYbOnpHcheKWPNyCY7-rAUx34X3Xghzok5cuD_ygG1R11f_4_AcUe2Dkcs_9n-wuu98rx</recordid><startdate>20180321</startdate><enddate>20180321</enddate><creator>Kryza, David</creator><creator>De Crozals, Gabriel</creator><creator>Mathe, Doriane</creator><creator>Taleb Sidi-Boumedine, Jacqueline</creator><creator>Janier, Marc</creator><creator>Chaix, Carole</creator><creator>Dumontet, Charles</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7TM</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7X8</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-3765-2964</orcidid><orcidid>https://orcid.org/0000-0003-4882-2364</orcidid><orcidid>https://orcid.org/0000-0003-1875-134X</orcidid><orcidid>https://orcid.org/0000-0001-5937-9180</orcidid></search><sort><creationdate>20180321</creationdate><title>Granulocyte-Colony Stimulating Factor Nanocarriers for Stimulation of the Immune System (Part II): Dose-Dependent Biodistribution and In Vivo Antitumor Efficacy in Combination with Rituximab</title><author>Kryza, David ; De Crozals, Gabriel ; Mathe, Doriane ; Taleb Sidi-Boumedine, Jacqueline ; Janier, Marc ; Chaix, Carole ; Dumontet, Charles</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a419t-8da00aa92aaa2f9c9aa507f4bfd7bfd661fb48cf1b6b3b1fc9f95129bda6cb193</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Adjuvants</topic><topic>Adjuvants, Immunologic - administration &amp; dosage</topic><topic>Adjuvants, Immunologic - pharmacokinetics</topic><topic>Adjuvants, Immunologic - pharmacology</topic><topic>Adjuvants, Immunologic - therapeutic use</topic><topic>Animals</topic><topic>Anticancer properties</topic><topic>Antineoplastic Agents, Immunological - administration &amp; dosage</topic><topic>Antineoplastic Agents, Immunological - pharmacokinetics</topic><topic>Antineoplastic Agents, Immunological - pharmacology</topic><topic>Antineoplastic Agents, Immunological - therapeutic use</topic><topic>Antineoplastic Combined Chemotherapy Protocols - administration &amp; dosage</topic><topic>Antineoplastic Combined Chemotherapy Protocols - pharmacokinetics</topic><topic>Antineoplastic Combined Chemotherapy Protocols - pharmacology</topic><topic>Antineoplastic Combined Chemotherapy Protocols - therapeutic use</topic><topic>Antitumor activity</topic><topic>Biochemistry, Molecular Biology</topic><topic>Chemical Sciences</topic><topic>Colonies</topic><topic>Colony-stimulating factor</topic><topic>Drug Carriers - chemistry</topic><topic>Drug Synergism</topic><topic>Female</topic><topic>Grafting</topic><topic>Granulocyte colony-stimulating factor</topic><topic>Granulocyte Colony-Stimulating Factor - administration &amp; dosage</topic><topic>Granulocyte Colony-Stimulating Factor - pharmacokinetics</topic><topic>Granulocyte Colony-Stimulating Factor - pharmacology</topic><topic>Granulocyte Colony-Stimulating Factor - therapeutic use</topic><topic>Growth factors</topic><topic>Humans</topic><topic>Immune system</topic><topic>Immunoglobulins</topic><topic>Immunotherapy</topic><topic>Indium</topic><topic>Infectious diseases</topic><topic>Innate immunity</topic><topic>Intravenous administration</topic><topic>Leukocytes (granulocytic)</topic><topic>Life Sciences</topic><topic>Liver</topic><topic>Lymphoma</topic><topic>Lymphoma - drug therapy</topic><topic>Lymphoma - immunology</topic><topic>Malignancy</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Mice, SCID</topic><topic>Monoclonal antibodies</topic><topic>Nanoparticles</topic><topic>Nanoparticles - chemistry</topic><topic>Radioactivity</topic><topic>Radiolabelling</topic><topic>Rituximab</topic><topic>Rituximab - administration &amp; dosage</topic><topic>Rituximab - pharmacokinetics</topic><topic>Rituximab - pharmacology</topic><topic>Rituximab - therapeutic use</topic><topic>Series &amp; special reports</topic><topic>Silicon Dioxide - chemistry</topic><topic>Spleen</topic><topic>Targeted cancer therapy</topic><topic>Tissue Distribution</topic><topic>Tumors</topic><topic>Xenografts</topic><topic>Xenotransplantation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kryza, David</creatorcontrib><creatorcontrib>De Crozals, Gabriel</creatorcontrib><creatorcontrib>Mathe, Doriane</creatorcontrib><creatorcontrib>Taleb Sidi-Boumedine, Jacqueline</creatorcontrib><creatorcontrib>Janier, Marc</creatorcontrib><creatorcontrib>Chaix, Carole</creatorcontrib><creatorcontrib>Dumontet, Charles</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Bioconjugate chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kryza, David</au><au>De Crozals, Gabriel</au><au>Mathe, Doriane</au><au>Taleb Sidi-Boumedine, Jacqueline</au><au>Janier, Marc</au><au>Chaix, Carole</au><au>Dumontet, Charles</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Granulocyte-Colony Stimulating Factor Nanocarriers for Stimulation of the Immune System (Part II): Dose-Dependent Biodistribution and In Vivo Antitumor Efficacy in Combination with Rituximab</atitle><jtitle>Bioconjugate chemistry</jtitle><addtitle>Bioconjugate Chem</addtitle><date>2018-03-21</date><risdate>2018</risdate><volume>29</volume><issue>3</issue><spage>804</spage><epage>812</epage><pages>804-812</pages><issn>1043-1802</issn><eissn>1520-4812</eissn><abstract>The purpose of immuno-modulation is to increase or restore the action of immunocompetent cells against tumors with or without the use of monoclonal antibodies. The innate immune system is a key player in various pathological situations, but cells of this system appear to be inhibited or insufficiently active in malignancy or severe infectious diseases. The present study was designed to investigate therapeutic value of nanoparticles (NPs) coupled with bioactive hematopoietic growth factors acting on the innate immune system. The use of nanoparticles (NPs) allowing multimodal detection and multifunctional grafting are currently of great interest for theranostic purposes. In the present work, we have evaluated the impact of the number of granulocyte-colony stimulating factor (G-CSF) grafted on the surface on the NPs on the biodistribution in mice thanks to indium 111 radiolabeling. Furthermore, we have investigated whether grafted G-CSF NPs could stimulate the immune innate system and enhance the therapeutic efficacy of the monoclonal antibody rituximab in mice bearing human lymphoma xenografts. Following intravenous (i.v.) administration of NP-DTPA and NP-DTPA/G-CSF-X high levels of radioactivity were observed in the liver. Furthermore, spleen uptake was correlated with the number of G-CSF molecules grafted on the surface of the NPs. Combining NP-DTPA/G-CSF-34 with rituximab strongly reduced RL tumor growth compared to rituximab alone or in combination with conventional G-CSF + rituximab. The use of highly loaded G-CSF NPs as immune adjuvants could enhance the antitumor activity of therapeutic monoclonal antibodies by amplifying tumor cell destruction by innate immune cells.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>29283559</pmid><doi>10.1021/acs.bioconjchem.7b00606</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-3765-2964</orcidid><orcidid>https://orcid.org/0000-0003-4882-2364</orcidid><orcidid>https://orcid.org/0000-0003-1875-134X</orcidid><orcidid>https://orcid.org/0000-0001-5937-9180</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1043-1802
ispartof Bioconjugate chemistry, 2018-03, Vol.29 (3), p.804-812
issn 1043-1802
1520-4812
language eng
recordid cdi_hal_primary_oai_HAL_hal_01767371v1
source MEDLINE; American Chemical Society Journals
subjects Adjuvants
Adjuvants, Immunologic - administration & dosage
Adjuvants, Immunologic - pharmacokinetics
Adjuvants, Immunologic - pharmacology
Adjuvants, Immunologic - therapeutic use
Animals
Anticancer properties
Antineoplastic Agents, Immunological - administration & dosage
Antineoplastic Agents, Immunological - pharmacokinetics
Antineoplastic Agents, Immunological - pharmacology
Antineoplastic Agents, Immunological - therapeutic use
Antineoplastic Combined Chemotherapy Protocols - administration & dosage
Antineoplastic Combined Chemotherapy Protocols - pharmacokinetics
Antineoplastic Combined Chemotherapy Protocols - pharmacology
Antineoplastic Combined Chemotherapy Protocols - therapeutic use
Antitumor activity
Biochemistry, Molecular Biology
Chemical Sciences
Colonies
Colony-stimulating factor
Drug Carriers - chemistry
Drug Synergism
Female
Grafting
Granulocyte colony-stimulating factor
Granulocyte Colony-Stimulating Factor - administration & dosage
Granulocyte Colony-Stimulating Factor - pharmacokinetics
Granulocyte Colony-Stimulating Factor - pharmacology
Granulocyte Colony-Stimulating Factor - therapeutic use
Growth factors
Humans
Immune system
Immunoglobulins
Immunotherapy
Indium
Infectious diseases
Innate immunity
Intravenous administration
Leukocytes (granulocytic)
Life Sciences
Liver
Lymphoma
Lymphoma - drug therapy
Lymphoma - immunology
Malignancy
Mice
Mice, Inbred C57BL
Mice, SCID
Monoclonal antibodies
Nanoparticles
Nanoparticles - chemistry
Radioactivity
Radiolabelling
Rituximab
Rituximab - administration & dosage
Rituximab - pharmacokinetics
Rituximab - pharmacology
Rituximab - therapeutic use
Series & special reports
Silicon Dioxide - chemistry
Spleen
Targeted cancer therapy
Tissue Distribution
Tumors
Xenografts
Xenotransplantation
title Granulocyte-Colony Stimulating Factor Nanocarriers for Stimulation of the Immune System (Part II): Dose-Dependent Biodistribution and In Vivo Antitumor Efficacy in Combination with Rituximab
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T11%3A58%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Granulocyte-Colony%20Stimulating%20Factor%20Nanocarriers%20for%20Stimulation%20of%20the%20Immune%20System%20(Part%20II):%20Dose-Dependent%20Biodistribution%20and%20In%20Vivo%20Antitumor%20Efficacy%20in%20Combination%20with%20Rituximab&rft.jtitle=Bioconjugate%20chemistry&rft.au=Kryza,%20David&rft.date=2018-03-21&rft.volume=29&rft.issue=3&rft.spage=804&rft.epage=812&rft.pages=804-812&rft.issn=1043-1802&rft.eissn=1520-4812&rft_id=info:doi/10.1021/acs.bioconjchem.7b00606&rft_dat=%3Cproquest_hal_p%3E1982843252%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2087733701&rft_id=info:pmid/29283559&rfr_iscdi=true